Snell E H, Cassetta A, Helliwell J R, Boggon T J, Chayen N E, Weckert E, Holzer K, Schroer K, Gordon E J, Zagalsky P F
Chemistry Department, University of Manchester, England.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):231-9.
The protein apocrustacyanin C1 has been crystallized by vapour diffusion in both microgravity (the NASA space shuttle USML-2 mission) and on the ground. Rocking width measurements were made on the crystals at the ESRF Swiss-Norwegian beamline using a high-resolution psi-circle diffractometer from the University of Karlsruhe. Crystal perfection was then evaluated, from comparison of the reflection rocking curves from a total of five crystals (three grown in microgravity and two earth controls), and by plotting mosaicity versus reflection signal/noise. Comparison was then made with previous measurements of almost 'perfect' lysozyme crystals grown aboard IML-2 and Spacehab-1 and reported by Snell et al. [Snell, Weisgerber, Helliwell, Weckert, Holzer & Schroer (1995). Acta Cryst. D51, 1099-1102]. Overall, the best diffraction-quality apocrustacyanin C1 crystal was microgravity grown, but one earth-grown crystal was as good as one of the other microgravity-grown crystals. The remaining two crystals (one from microgravity and one from earth) were poorer than the other three and of fairly equal quality. Crystal movement during growth in microgravity, resulting from the use of vapour-diffusion geometry, may be the cause of not realising the 'theoretical' limit of perfect protein crystal quality.
脱辅基虾青素蛋白C1已通过气相扩散法在微重力环境(美国国家航空航天局航天飞机USML - 2任务)和地面上结晶。在欧洲同步辐射装置(ESRF)的瑞士 - 挪威光束线上,使用卡尔斯鲁厄大学的高分辨率ψ圆衍射仪对晶体进行了摇摆宽度测量。然后,通过比较总共五块晶体(三块在微重力环境下生长,两块作为地面对照)的反射摇摆曲线,并绘制镶嵌度与反射信号/噪声的关系图,对晶体的完整性进行了评估。随后,将其与之前由斯内尔等人报道的在IML - 2和太空实验室 - 1上生长的几乎“完美”的溶菌酶晶体的测量结果进行了比较[Snell, Weisgerber, Helliwell, Weckert, Holzer & Schroer (1995). Acta Cryst. D51, 1099 - 1102]。总体而言,衍射质量最佳的脱辅基虾青素蛋白C1晶体是在微重力环境下生长的,但有一块地面生长的晶体与其他微重力环境下生长的晶体之一质量相当。其余两块晶体(一块来自微重力环境,一块来自地面)比其他三块晶体质量差,且质量相当。在微重力环境下生长过程中,由于采用气相扩散几何结构导致的晶体移动,可能是未能达到完美蛋白质晶体质量“理论”极限的原因。