Suppr超能文献

Correcting organ motion artifacts in x-ray CT medical imaging systems by adaptive processing. I. Theory.

作者信息

Dhanantwari A C, Stergiopoulos S, Iakovidis I

机构信息

Biomedical Sciences Section, Defense and Civil Institute of Environmental Medicine, Toronto, Ontario, Canada.

出版信息

Med Phys. 2001 Aug;28(8):1562-76. doi: 10.1118/1.1388892.

Abstract

X-ray CT scanners provide images of transverse cross sections of the human body from a large number of projections. During the data acquisition process, which usually takes about 1 s, motion effects such as respiration, cardiac motion, and patient restlessness produce artifacts that appear as blurring, doubling, and distortion in the reconstructed images, and may lead to inaccurate diagnosis. To address this problem several processing techniques have been proposed that require a priori knowledge of the motion characteristics. This paper proposes a method, which makes no assumptions about the properties of the motion, to eliminate the motion artifacts. The approach in this paper uses a spatial overlap correlator scheme to accurately track organ motion in computed tomography imaging systems. Then, it is shown that as optimum processing scheme to remove organ motion effects is to apply adaptive interference cancellation (AIC) methods, which treat the output of the spatial overlap correlator as noise interference at the input of the AIC process. Furthermore, an AIC method does not require any kind of periodicity of the motion effects. Synthetic data tests demonstrate the validity of this approach and show that hardware modifications are essential for its implementation in x-ray CT medical imaging systems.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验