Bak S, Feyereisen R
Plant Biochemistry Laboratory, Department of Plant Biology, and Center of Molecular Plant Physiology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
Plant Physiol. 2001 Sep;127(1):108-18. doi: 10.1104/pp.127.1.108.
The first committed step in the biosynthesis of indole glucosinolates is the conversion of indole-3-acetaldoxime into an indole-3-S-alkyl-thiohydroximate. The initial step in this conversion is catalyzed by CYP83B1 in Arabidopsis (S. Bak, F.E. Tax, K.A. Feldmann, D.A. Galbraith, R. Feyereisen [2001] Plant Cell 13: 101-111). The knockout mutant of the CYP83B1 gene (rnt1-1) shows a strong auxin excess phenotype and are allelic to sur-2. CYP83A1 is the closest relative to CYP83B1 and shares 63% amino acid sequence identity. Although expression of CYP83A1 under control of its endogenous promoter in the rnt1-1 background does not prevent the auxin excess and indole glucosinolate deficit phenotype caused by the lack of the CYP83B1 gene, ectopic overexpression of CYP83A1 using a 35S promoter rescues the rnt1-1 phenotype. CYP83A1 and CYP83B1 heterologously expressed in yeast (Saccharomyces cerevisiae) cells show marked differences in their substrate specificity. Both enzymes convert indole-3-acetaldoxime to a thiohydroximate adduct in the presence of NADPH and a nucleophilic thiol donor. However, indole-3-acetaldoxime has a 50-fold higher affinity toward CYP83B1 than toward CYP83A1. Both enzymes also metabolize the phenylalanine- and tyrosine-derived aldoximes. Enzyme kinetic comparisons of CYP83A1 and CYP83B1 show that indole-3-acetaldoxime is the physiological substrate for CYP83B1 but not for CYP83A1. Instead, CYP83A1 catalyzes the initial conversion of aldoximes to thiohydroximates in the synthesis of glucosinolates not derived from tryptophan. The two closely related CYP83 subfamily members therefore are not redundant. The presence of putative auxin responsive cis-acting elements in the CYP83B1 promoter but not in the CYP83A1 promoter supports the suggestion that CYP83B1 has evolved to selectively metabolize a tryptophan-derived aldoxime intermediate shared with the pathway of auxin biosynthesis in Arabidopsis.
吲哚硫代葡萄糖苷生物合成的第一个关键步骤是将吲哚 - 3 - 乙醛肟转化为吲哚 - 3 - S - 烷基硫代肟酸酯。这一转化的起始步骤由拟南芥中的CYP83B1催化(S. 巴克、F.E. 塔克斯、K.A. 费尔德曼、D.A. 加尔布雷斯、R. 费耶雷森 [2001] 《植物细胞》13: 101 - 111)。CYP83B1基因的敲除突变体(rnt1 - 1)表现出强烈的生长素过量表型,并且与sur - 2等位。CYP83A1是与CYP83B1亲缘关系最近的基因,氨基酸序列同一性为63%。尽管在rnt1 - 1背景下,CYP83A1在其内源启动子控制下的表达并不能阻止因缺乏CYP83B1基因而导致的生长素过量和吲哚硫代葡萄糖苷缺乏表型,但使用35S启动子异位过表达CYP83A1可挽救rnt1 - 1表型。在酵母(酿酒酵母)细胞中异源表达的CYP83A1和CYP83B1在底物特异性上表现出显著差异。在存在NADPH和亲核硫醇供体的情况下,这两种酶都能将吲哚 - 3 - 乙醛肟转化为硫代肟酸酯加合物。然而,吲哚 - 3 - 乙醛肟对CYP83B1的亲和力比对CYP83A1高50倍。这两种酶还能代谢苯丙氨酸和酪氨酸衍生的醛肟。CYP83A1和CYP83B1的酶动力学比较表明,吲哚 - 3 - 乙醛肟是CYP83B1的生理底物,而不是CYP83A1的。相反,CYP83A1在非色氨酸衍生的硫代葡萄糖苷合成中催化醛肟向硫代肟酸酯的初始转化。因此,这两个密切相关的CYP83亚家族成员并非冗余。CYP83B1启动子中存在假定的生长素响应顺式作用元件,而CYP83A1启动子中不存在,这支持了CYP83B1已经进化到选择性代谢与拟南芥生长素生物合成途径共享的色氨酸衍生醛肟中间体的观点。