Bak S, Tax F E, Feldmann K A, Galbraith D W, Feyereisen R
Departments of Plant Sciences, Molecular and Cellular Biology, and Entomology, University of Arizona, Tucson, Arizona 85721, USA.
Plant Cell. 2001 Jan;13(1):101-11. doi: 10.1105/tpc.13.1.101.
Auxins are growth regulators involved in virtually all aspects of plant development. However, little is known about how plants synthesize these essential compounds. We propose that the level of indole-3-acetic acid is regulated by the flux of indole-3-acetaldoxime through a cytochrome P450, CYP83B1, to the glucosinolate pathway. A T-DNA insertion in the CYP83B1 gene leads to plants with a phenotype that suggests severe auxin overproduction, whereas CYP83B1 overexpression leads to loss of apical dominance typical of auxin deficit. CYP83B1 N-hydroxylates indole-3-acetaldoxime to the corresponding aci-nitro compound, 1-aci-nitro-2-indolyl-ethane, with a K(m) of 3 microM and a turnover number of 53 min(-1). The aci-nitro compound formed reacts non-enzymatically with thiol compounds to produce an N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates. Thus, indole-3-acetaldoxime is the metabolic branch point between the primary auxin indole-3-acetic acid and indole glucosinolate biosynthesis in Arabidopsis.
生长素是参与植物发育几乎所有方面的生长调节剂。然而,关于植物如何合成这些必需化合物却知之甚少。我们提出,吲哚 - 3 - 乙酸的水平是由吲哚 - 3 - 乙醛肟通过细胞色素P450(CYP83B1)进入硫代葡萄糖苷途径的通量所调节的。CYP83B1基因中的T - DNA插入导致植物呈现出一种表明生长素严重过量产生的表型,而CYP83B1的过表达则导致典型的生长素缺乏的顶端优势丧失。CYP83B1将吲哚 - 3 - 乙醛肟N - 羟基化为相应的酸式硝基化合物1 - 酸式硝基 - 2 - 吲哚基乙烷,其米氏常数(K(m))为3 microM,周转数为53 min(-1)。形成的酸式硝基化合物与硫醇化合物发生非酶反应,生成硫代肟酸酯加合物,这是硫代葡萄糖苷的直接前体。因此,吲哚 - 3 - 乙醛肟是拟南芥中主要生长素吲哚 - 3 - 乙酸和吲哚硫代葡萄糖苷生物合成之间的代谢分支点。