Suppr超能文献

在单纯疱疹病毒1型感染的细胞中,RNA聚合酶II全酶修饰伴随着转录重编程。

RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells.

作者信息

Jenkins H L, Spencer C A

机构信息

Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada.

出版信息

J Virol. 2001 Oct;75(20):9872-84. doi: 10.1128/JVI.75.20.9872-9884.2001.

Abstract

During lytic infection, herpes simplex virus type 1 (HSV-1) represses host transcription, recruits RNA polymerase II (RNAP II) to viral replication compartments, and alters the phosphorylation state of the RNAP II large subunit. Host transcription repression and RNAP II modifications require expression of viral immediate-early (IE) genes. Efficient modification of the RNAP II large subunit to the intermediately phosphorylated (IIi) form requires expression of ICP22 and the UL13 kinase. We have further investigated the mechanisms by which HSV-1 effects global changes in RNAP II transcription by analyzing the RNAP II holoenzyme. We find that the RNAP II general transcription factors (GTFs) remain abundant after infection and are recruited into viral replication compartments, suggesting that they continue to be involved in viral gene transcription. However, virus infection modifies the composition of the RNAP II holoenzyme, in particular triggering the loss of the essential GTF, TFIIE. Loss of TFIIE from the RNAP II holoenzyme requires viral IE gene expression, and viral IE proteins may be redundant in mediating this effect. Although viral IE proteins do not associate with the RNAP II holoenzyme, they interact with RNAP II in complexes of lower molecular mass. As the RNAP II holoenzyme containing TFIIE is necessary for activated transcription initiation and RNAP II large subunit phosphorylation in uninfected cells, virus-induced modifications to the holoenzyme may affect both of these processes, leading to aberrant phosphorylation of the RNAP II large subunit and repression of host gene transcription.

摘要

在裂解感染期间,单纯疱疹病毒1型(HSV-1)抑制宿主转录,将RNA聚合酶II(RNAP II)募集到病毒复制区室,并改变RNAP II大亚基的磷酸化状态。宿主转录抑制和RNAP II修饰需要病毒立即早期(IE)基因的表达。将RNAP II大亚基有效修饰为中等磷酸化(IIi)形式需要ICP22和UL13激酶的表达。我们通过分析RNAP II全酶,进一步研究了HSV-1影响RNAP II转录全局变化的机制。我们发现,感染后RNAP II通用转录因子(GTF)仍然丰富,并被募集到病毒复制区室,这表明它们继续参与病毒基因转录。然而,病毒感染会改变RNAP II全酶的组成,特别是引发必需GTF TFIIE的缺失。从RNAP II全酶中缺失TFIIE需要病毒IE基因表达,并且病毒IE蛋白在介导这种效应方面可能是冗余的。虽然病毒IE蛋白不与RNAP II全酶结合,但它们在较低分子量的复合物中与RNAP II相互作用。由于含有TFIIE的RNAP II全酶对于未感染细胞中的活化转录起始和RNAP II大亚基磷酸化是必需的,病毒诱导的全酶修饰可能会影响这两个过程,导致RNAP II大亚基的异常磷酸化和宿主基因转录的抑制。

相似文献

4
Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II.
J Virol. 2007 May;81(10):5091-101. doi: 10.1128/JVI.00184-07. Epub 2007 Mar 7.
7
Repression of host RNA polymerase II transcription by herpes simplex virus type 1.
J Virol. 1997 Mar;71(3):2031-40. doi: 10.1128/JVI.71.3.2031-2040.1997.
10
The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12666-71. doi: 10.1073/pnas.1835726100. Epub 2003 Oct 20.

引用本文的文献

1
3
Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7.
J Virol. 2024 Oct 22;98(10):e0117824. doi: 10.1128/jvi.01178-24. Epub 2024 Sep 24.
4
Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication.
Front Immunol. 2022 Nov 30;13:1088690. doi: 10.3389/fimmu.2022.1088690. eCollection 2022.
5
Regulation of alphaherpesvirus protein via post-translational phosphorylation.
Vet Res. 2022 Nov 17;53(1):93. doi: 10.1186/s13567-022-01115-z.
7
Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection.
Acta Naturae. 2020 Oct-Dec;12(4):34-46. doi: 10.32607/actanaturae.11041.
10

本文引用的文献

2
ICP0, a regulator of herpes simplex virus during lytic and latent infection.
Bioessays. 2000 Aug;22(8):761-70. doi: 10.1002/1521-1878(200008)22:8<761::AID-BIES10>3.0.CO;2-A.
4
Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation.
J Cell Biol. 2000 Jul 10;150(1):13-26. doi: 10.1083/jcb.150.1.13.
5
Transcription elongation and human disease.
Annu Rev Biochem. 1999;68:301-19. doi: 10.1146/annurev.biochem.68.1.301.
6
A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme.
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7916-20. doi: 10.1073/pnas.140109897.
7
RNA polymerase II and the integration of nuclear events.
Genes Dev. 2000 Jun 15;14(12):1415-29.
8
Analysis of HCF, the cellular cofactor of VP16, in herpes simplex virus-infected cells.
J Virol. 2000 Jan;74(1):99-109. doi: 10.1128/jvi.74.1.99-109.2000.
9
MCM proteins are associated with RNA polymerase II holoenzyme.
Mol Cell Biol. 1999 Sep;19(9):6154-63. doi: 10.1128/MCB.19.9.6154.
10
Coupling RNA polymerase II transcription with pre-mRNA processing.
Curr Opin Cell Biol. 1999 Jun;11(3):347-51. doi: 10.1016/S0955-0674(99)80048-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验