Alain C, Arnott S R, Hevenor S, Graham S, Grady C L
The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON, Canada M6A 2E1.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12301-6. doi: 10.1073/pnas.211209098. Epub 2001 Sep 25.
The extent to which sound identification and sound localization depend on specialized auditory pathways was examined by using functional magnetic resonance imaging and event-related brain potentials. Participants performed an S1-S2 match-to-sample task in which S1 differed from S2 in its pitch and/or location. In the pitch task, participants indicated whether S2 was lower, identical, or higher in pitch than S1. In the location task, participants were asked to localize S2 relative to S1 (i.e., leftward, same, or rightward). Relative to location, pitch processing generated greater activation in auditory cortex and the inferior frontal gyrus. Conversely, identifying the location of S2 relative to S1 generated greater activation in posterior temporal cortex, parietal cortex, and the superior frontal sulcus. Differential task-related effects on event-related brain potentials (ERPs) were seen in anterior and posterior brain regions beginning at 300 ms poststimulus and lasting for several hundred milliseconds. The converging evidence from two independent measurements of dissociable brain activity during identification and localization of identical stimuli provides strong support for specialized auditory streams in the human brain. These findings are analogous to the "what" and "where" segregation of visual information processing, and suggest that a similar functional organization exists for processing information from the auditory modality.
通过使用功能磁共振成像和事件相关脑电位,研究了声音识别和声音定位在多大程度上依赖于专门的听觉通路。参与者执行了一个S1 - S2匹配样本任务,其中S1在音高和/或位置上与S2不同。在音高任务中,参与者指出S2的音高比S1低、相同还是高。在位置任务中,参与者被要求相对于S1定位S2(即向左、相同或向右)。相对于位置,音高处理在听觉皮层和额下回产生了更大的激活。相反,识别S2相对于S1的位置在颞后皮层、顶叶皮层和额上沟产生了更大的激活。在刺激后300毫秒开始并持续数百毫秒的前后脑区域中,观察到了与任务相关的事件相关脑电位(ERP)的差异效应。来自对相同刺激进行识别和定位期间可分离脑活动的两种独立测量的汇聚证据,为人类大脑中专门的听觉流提供了有力支持。这些发现类似于视觉信息处理中的“什么”和“哪里”分离,并表明在处理来自听觉模态的信息时存在类似的功能组织。