Kirkitadze M D, Condron M M, Teplow D B
Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.
J Mol Biol. 2001 Oct 5;312(5):1103-19. doi: 10.1006/jmbi.2001.4970.
Amyloid beta-protein (Abeta) assembly into toxic oligomeric and fibrillar structures is a seminal event in Alzheimer's disease, therefore blocking this process could have significant therapeutic benefit. A rigorous mechanistic understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Prior studies have shown that Abeta fibrillogenesis involves conformational changes leading to the formation of extended beta-sheets and that an alpha-helix-containing intermediate may be involved. However, the significance of this intermediate has been a matter of debate. We report here that the formation of an oligomeric, alpha-helix-containing assembly is a key step in Abeta fibrillogenesis. The generality of this phenomenon was supported by conformational studies of 18 different Abeta peptides, including wild-type Abeta(1-40) and Abeta(1-42), biologically relevant truncated and chemically modified Abeta peptides, and Abeta peptides causing familial forms of cerebral amyloid angiopathy. Without exception, fibrillogenesis of these peptides involved an oligomeric alpha-helix-containing intermediate and the kinetics of formation of the intermediate and of fibrils was temporally correlated. The kinetics varied depending on amino acid sequence and the extent of peptide N- and C-terminal truncation. The pH dependence of helix formation suggested that Asp and His exerted significant control over this process and over fibrillogenesis in general. Consistent with this idea, Abeta peptides containing Asp-->Asn or His-->Gln substitutions showed altered fibrillogenesis kinetics. These data emphasize the importance of the dynamic interplay between Abeta monomer conformation and oligomerization state in controlling fibrillogenesis kinetics.
淀粉样β蛋白(Aβ)组装成有毒的寡聚体和纤维状结构是阿尔茨海默病中的一个关键事件,因此阻断这一过程可能具有显著的治疗益处。对Aβ组装进行严格的机制理解将有助于纤维生成抑制剂的靶向和设计。先前的研究表明,Aβ纤维生成涉及构象变化,导致形成延伸的β折叠,并且可能涉及一个含α螺旋的中间体。然而,这个中间体的重要性一直存在争议。我们在此报告,形成一种含α螺旋的寡聚体组装是Aβ纤维生成中的关键步骤。18种不同Aβ肽的构象研究支持了这一现象的普遍性,这些肽包括野生型Aβ(1-40)和Aβ(1-42)、具有生物学相关性的截短和化学修饰的Aβ肽,以及导致家族性脑淀粉样血管病的Aβ肽。无一例外,这些肽的纤维生成都涉及一个含α螺旋的寡聚体中间体,并且中间体和纤维形成的动力学在时间上是相关的。动力学因氨基酸序列以及肽N端和C端截短的程度而异。螺旋形成的pH依赖性表明,Asp和His对这一过程以及总体上的纤维生成施加了显著控制。与此观点一致,含有Asp→Asn或His→Gln替换的Aβ肽显示出改变的纤维生成动力学。这些数据强调了Aβ单体构象与寡聚化状态之间的动态相互作用在控制纤维生成动力学中的重要性。