Suppr超能文献

理解人类胰岛淀粉样多肽的结构动力学:离子淌度质谱技术的进展及应用。

Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry.

机构信息

Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK.

Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.

出版信息

Biophys Chem. 2024 Sep;312:107285. doi: 10.1016/j.bpc.2024.107285. Epub 2024 Jun 25.

Abstract

Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.

摘要

人胰岛淀粉样多肽(hIAPP)形成淀粉样沉积物,导致胰岛β细胞死亡,被认为是 2 型糖尿病(T2DM)的标志。有证据表明,在聚集过程中形成的 hIAPP 早期寡聚体是诱导胰岛淀粉样β细胞死亡的主要致病因素。然而,hIAPP 的自组装机制仍然难以捉摸,这主要是由于传统的生物物理技术在探测早期结构动态寡聚体的分布或捕获其详细结构方面存在局限性。离子迁移质谱(IM-MS)的出现使得能够在气相中对 hIAPP 早期寡聚体进行特征描述,为深入了解寡聚体形成机制以及结构信息与寡聚体细胞毒性的相关性铺平了道路。IM-MS 提供的灵敏度和快速结构特征化也有望用于筛选 hIAPP 抑制剂,通过“光谱指纹”对其抑制模式进行分类。本文综述了 IM-MS 在剖析 hIAPP 寡聚化复杂步骤中的应用,考察了金属离子的抑制作用,并探索了不同 hIAPP 变体异源寡聚化的特征。我们强调了 IM-MS 作为 hIAPP 抑制剂高通量筛选工具的潜力,以及为其作用模式提供见解的潜力。最后,我们讨论了串联 IM-MS 和气相光谱与 IM-MS 结合最近进展所带来的进展,这有望提供 hIAPP 寡聚体更灵敏和更高分辨率的结构图谱。这些信息可能有助于为 T2DM 中的胰岛淀粉样变性开辟新的靶向治疗策略。

相似文献

4
Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies.
Biol Chem. 2020 Sep 4;402(2):133-153. doi: 10.1515/hsz-2020-0174. Print 2021 Jan 27.
5
Role of mass spectrometry in the study of interactions between amylin and metal ions.
Mass Spectrom Rev. 2023 May;42(3):984-1007. doi: 10.1002/mas.21732. Epub 2021 Sep 24.
6
The β-cell assassin: IAPP cytotoxicity.
J Mol Endocrinol. 2017 Oct;59(3):R121-R140. doi: 10.1530/JME-17-0105. Epub 2017 Aug 15.
7
Zinc-Induced Conformational Transitions in Human Islet Amyloid Polypeptide and Their Role in the Inhibition of Amyloidosis.
J Phys Chem B. 2018 Nov 1;122(43):9852-9859. doi: 10.1021/acs.jpcb.8b06206. Epub 2018 Oct 18.
8
Human IAPP amyloidogenic properties and pancreatic β-cell death.
Cell Calcium. 2014 Nov;56(5):416-27. doi: 10.1016/j.ceca.2014.08.011. Epub 2014 Aug 27.
10
Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic β-cells.
J Biol Chem. 2018 Sep 14;293(37):14210-14223. doi: 10.1074/jbc.RA118.002414. Epub 2018 Jul 16.

引用本文的文献

1
Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity.
Diabetes Ther. 2025 Jun;16(6):1207-1227. doi: 10.1007/s13300-025-01733-8. Epub 2025 May 7.

本文引用的文献

1
Sequence-based identification of amyloidogenic β-hairpins reveals a prostatic acid phosphatase fragment promoting semen amyloid formation.
Comput Struct Biotechnol J. 2023 Dec 21;23:417-430. doi: 10.1016/j.csbj.2023.12.023. eCollection 2024 Dec.
2
A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers.
J Am Chem Soc. 2023 Aug 23;145(33):18340-18354. doi: 10.1021/jacs.3c03980. Epub 2023 Aug 9.
3
Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section.
Chem Rev. 2023 Mar 22;123(6):2902-2949. doi: 10.1021/acs.chemrev.2c00600. Epub 2023 Feb 24.
4
Gas-phase Förster resonance energy transfer in mass-selected and trapped ions.
Mass Spectrom Rev. 2024 May-Jun;43(3):477-499. doi: 10.1002/mas.21828. Epub 2022 Dec 13.
5
Analysis of Sheep and Goat IAPP Provides Insight into IAPP Amyloidogenicity and Cytotoxicity.
Biochemistry. 2022 Nov 15;61(22):2531-2545. doi: 10.1021/acs.biochem.2c00470. Epub 2022 Oct 26.
7
Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly.
Nat Commun. 2022 Feb 24;13(1):1040. doi: 10.1038/s41467-022-28660-7.
8
Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2.
Biochim Biophys Acta Proteins Proteom. 2022 Mar 1;1870(3):140759. doi: 10.1016/j.bbapap.2022.140759. Epub 2022 Jan 18.
9
Surface-Catalyzed Secondary Nucleation Dominates the Generation of Toxic IAPP Aggregates.
Front Mol Biosci. 2021 Nov 1;8:757425. doi: 10.3389/fmolb.2021.757425. eCollection 2021.
10
Protein Structure Prediction with Mass Spectrometry Data.
Annu Rev Phys Chem. 2022 Apr 20;73:1-19. doi: 10.1146/annurev-physchem-082720-123928. Epub 2021 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验