Dellar P J
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 1):031203. doi: 10.1103/PhysRevE.64.031203. Epub 2001 Aug 27.
Lattice Boltzmann equations (LBE) are a useful tool for simulating the incompressible Navier-Stokes equations. However, LBE actually simulate a compressible but usually isothermal fluid at some small but finite Mach number. There has been recent interest in using LBE at larger, but still subsonic, Mach numbers, for which the viscous terms in the resulting momentum equation depart appreciably from those in the compressible Navier-Stokes equations. In particular, the isothermal constraint implies a nonzero "bulk" viscosity in addition to the usual shear viscosity. This difficulty arises at the level of the isothermal continuum Boltzmann equation prior to discretization. A remedy is proposed, and tested in numerical experiments with decaying sound waves. Conversely, an enhanced bulk viscosity is found useful for identifying or suppressing artifacts in under-resolved simulations of supposedly incompressible shear flows.
格子玻尔兹曼方程(LBE)是模拟不可压缩纳维-斯托克斯方程的一种有用工具。然而,LBE实际上模拟的是一种在某个小但有限马赫数下的可压缩但通常等温的流体。最近人们对在较大但仍为亚音速的马赫数下使用LBE产生了兴趣,对于这种情况,所得动量方程中的粘性项与可压缩纳维-斯托克斯方程中的粘性项有明显差异。特别是,等温约束意味着除了通常的剪切粘度外,还存在非零的“体”粘度。这个困难在离散化之前的等温连续玻尔兹曼方程层面就出现了。本文提出了一种补救方法,并在衰减声波的数值实验中进行了测试。相反,发现增强的体粘度对于识别或抑制在假定不可压缩剪切流的分辨率不足模拟中的伪影很有用。