Dharma-Wardana M W
National Research Council, Ottawa, Canada K1A 0R6.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):035401. doi: 10.1103/PhysRevE.64.035401. Epub 2001 Aug 29.
We present results for the electron-ion energy relaxation coupling constants g(ei)(T(e),T(i),kappa) for aluminum, carbon, and silicon plasmas at several electron and ion temperatures T(i), T(e) of experimental interest. The calculations use the Fermi golden rule and the Landau-Spitzer model valid at weak electron-ion coupling, as well as the coupled-mode approach suitable for strong coupling. A physically motivated simple derivation of the coupled-mode energy relaxation formula for two-component charged fluids is presented. While the commonly used weak-coupling theories predict relaxation constants relatively independent of the ion temperature, the strong-coupling theory predicts energy relaxation constants that become smaller by an order of magnitude as the ion temperature is lowered.
我们给出了铝、碳和硅等离子体在几个具有实验意义的电子和离子温度(T(i))、(T(e))下的电子 - 离子能量弛豫耦合常数(g(ei)(T(e),T(i),kappa))的结果。计算使用了在弱电子 - 离子耦合下有效的费米黄金规则和朗道 - 斯皮策模型,以及适用于强耦合的耦合模方法。给出了一种基于物理动机的双组分带电流体耦合模能量弛豫公式的简单推导。虽然常用的弱耦合理论预测弛豫常数相对独立于离子温度,但强耦合理论预测,随着离子温度降低,能量弛豫常数会减小一个数量级。