Ellerbroek B L, Rigaut F
Gemini Observatory, Hilo, Hawaii 96720, USA.
J Opt Soc Am A Opt Image Sci Vis. 2001 Oct;18(10):2539-47. doi: 10.1364/josaa.18.002539.
Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.
多共轭自适应光学(MCAO)是一种用于在三维而非二维空间中校正湍流引起的相位畸变的技术,从而极大地扩展了自适应光学系统的校正视场。这是通过使用多个与大气中不同范围共轭的可变形镜来实现的,其致动器命令根据来自多个导星的波前传感器(WFS)测量值来计算。在天文MCAO系统中,必须使用激光导星(LGS)(至少在可预见的未来)以实现有用的天空覆盖程度。正如单个LGS不能用于测量整体波前倾斜一样,在同一范围内的多个LGS组成的星群也无法检测倾斜非等晕性。仅这一误差就会显著降低基于单个仅用于倾斜测量的自然导星(NGS)和在同一高度的多个去除倾斜的LGS的MCAO系统的性能。我们针对倾斜非等晕性的主要来源提出了一种启发式的低阶模型,该模型提出了四种可能的方法来消除LGS MCAO中的这一缺陷:(i)来自多个NGS的倾斜/俯仰测量,(ii)LGS倾斜不确定性问题的解决方案,(iii)来自单个NGS的额外高阶WFS测量,或(iv)来自不同范围的钠和瑞利LGS的高阶WFS测量。针对一种特定MCAO系统配置的示例数值结果表明,方法(ii)如果可行,将提供最高程度的倾斜非等晕性补偿。方法(i)和(iv)也提供了非常有用的性能水平,并且不需要不切实际的低水平WFS测量噪声。对于一台8米望远镜的一组代表性参数,方法(iv)所需的额外激光功率约为每个瑞利LGS 2瓦。