Inza I, Merino M, Larrañaga P, Quiroga J, Sierra B, Girala M
Department of Computer Science and Artificial Intelligence, P.O. Box 649, University of the Basque Country, E-20080 Donostia-, San Sebastián, Spain.
Artif Intell Med. 2001 Oct;23(2):187-205. doi: 10.1016/s0933-3657(01)00085-9.
The transjugular intrahepatic portosystemic shunt (TIPS) is an interventional treatment for cirrhotic patients with portal hypertension. In the light of our medical staff's experience, the consequences of TIPS are not homogeneous for all the patients and a subgroup dies in the first 6 months after TIPS placement. Actually, there is no risk indicator to identify this subgroup of patients before treatment. An investigation for predicting the survival of cirrhotic patients treated with TIPS is carried out using a clinical database with 107 cases and 77 attributes. Four supervised machine learning classifiers are applied to discriminate between both subgroups of patients. The application of several feature subset selection (FSS) techniques has significantly improved the predictive accuracy of these classifiers and considerably reduced the amount of attributes in the classification models. Among FSS techniques, FSS-TREE, a new randomized algorithm inspired on the new EDA (estimation of distribution algorithm) paradigm has obtained the best average accuracy results for each classifier.
经颈静脉肝内门体分流术(TIPS)是一种针对门静脉高压肝硬化患者的介入治疗方法。根据我们医护人员的经验,TIPS对所有患者产生的后果并不相同,有一个亚组患者在TIPS植入后的前6个月内死亡。实际上,在治疗前没有风险指标能够识别出这一亚组患者。利用一个包含107个病例和77个属性的临床数据库,开展了一项预测接受TIPS治疗的肝硬化患者生存率的调查。应用了四种监督式机器学习分类器来区分这两个患者亚组。几种特征子集选择(FSS)技术的应用显著提高了这些分类器的预测准确性,并大幅减少了分类模型中的属性数量。在FSS技术中,FSS-TREE是一种受新的EDA(分布估计算法)范式启发的新随机算法,对于每个分类器而言,它都取得了最佳的平均准确率结果。