Suppr超能文献

用于经颈静脉肝内门体分流术(TIPS)治疗的肝硬化患者生存预后的贝叶斯分类器中的特征选择

Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS.

作者信息

Blanco Rosa, Inza Iñaki, Merino Marisa, Quiroga Jorge, Larrañaga Pedro

机构信息

Department of Computer Science and Artificial Intelligence, University of Basque Country, P.O. Box 649, E-20080 San Sebastián, Spain.

出版信息

J Biomed Inform. 2005 Oct;38(5):376-88. doi: 10.1016/j.jbi.2005.05.004. Epub 2005 Jun 4.

Abstract

The transjugular intrahepatic portosystemic shunt (TIPS) is a treatment for cirrhotic patients with portal hypertension. A subgroup of patients dies in the first 6 months and another subgroup lives a long period of time. Nowadays, no risk factors have been identified in order to determine how long a patient will survive. An empirical study for predicting the survival rate within the first 6 months after TIPS placement is conducted using a clinical database with 107 cases and 77 variables. Applications of Bayesian classification models, based on Bayesian networks, to medical problems have become popular in the last years. Feature subset selection is useful due to the heterogeneity of the medical databases where not all the variables are required to perform the classification. In this paper, filter and wrapper approaches based on the feature subset selection are adapted to induce Bayesian classifiers (naive Bayes, selective naive Bayes, semi naive Bayes, tree augmented naive Bayes, and k-dependence Bayesian classifier) and are applied to distinguish between the two subgroups of cirrhotic patients. The estimated accuracies obtained tally with the results of previous studies. Moreover, the medical significance of the subset of variables selected by the classifiers along with the comprehensibility of Bayesian models is greatly appreciated by physicians.

摘要

经颈静脉肝内门体分流术(TIPS)是治疗门静脉高压肝硬化患者的一种方法。一部分患者在头6个月内死亡,另一部分患者则存活较长时间。目前,尚未确定任何风险因素来判断患者的存活时长。利用一个包含107个病例和77个变量的临床数据库,开展了一项预测TIPS置入后头6个月内生存率的实证研究。近年来,基于贝叶斯网络的贝叶斯分类模型在医学问题中的应用变得流行起来。由于医学数据库的异质性,并非所有变量都需要用于分类,因此特征子集选择很有用。本文采用基于特征子集选择的过滤和包装方法来诱导贝叶斯分类器(朴素贝叶斯、选择性朴素贝叶斯、半朴素贝叶斯、树增强朴素贝叶斯和k依赖贝叶斯分类器),并将其应用于区分肝硬化患者的两个亚组。获得的估计准确率与先前研究的结果相符。此外,分类器选择的变量子集的医学意义以及贝叶斯模型的可理解性得到了医生的高度认可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验