Schwarzer D, Mootz H D, Marahiel M A
Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Str., D-35032 Marburg, Germany.
Chem Biol. 2001 Oct;8(10):997-1010. doi: 10.1016/s1074-5521(01)00068-0.
A large number of pharmacologically important peptides are synthesized by multifunctional enzymes, the nonribosomal peptide synthetases (NRPSs). The thioesterase (Te) domain at the C-terminus of the last NRPS catalyzes product cleavage by hydrolysis or complex macrocyclization. Recent studies with excised Te domains and peptidyl-S-N-acetyl cysteamine substrate substitutes led to substantial insights in terms of cyclization activity and substrate tolerance of these enzymes. Their use in engineered hybrid NRPSs is an interesting but yet only little explored target for approaches to achieve new structural diversity and designed products.
To study the capability of various Te domains to function in hybrid NRPSs, six different Te domains that catalyze different modes of termination in their natural systems were fused to a bimodular model NRPS system, consisting of the first two modules of tyrocidine NRPS, TycA and ProCAT. All Te domains were active in hydrolyzing the enzymatically generated dipeptide substrate D-Phe-Abu from the NRPS template with, however, greatly varying turnover rates. Two Te domains were also capable of hydrolyzing the substrate D-Phe-Pro and partially cyclized the D-Phe-Abu dipeptide, indicating that in an artificial context Te domains may display hydrolytic and cyclization activities that are not easily predictable.
Te domains from heterologous NRPSs can be utilized for the construction of hybrid NRPSs. This is the first comparative study to explore their influence on the product pattern. The inherent specificity and regioselectivity of Te domains should allow control of the desired product cleavage, but can also lead to other modes of termination potentially useful for generating structural diversity. Our results provide the first data for choosing the proper Te domain for a particular termination reaction.
大量具有药理学重要性的肽是由多功能酶——非核糖体肽合成酶(NRPSs)合成的。最后一个NRPS C端的硫酯酶(Te)结构域通过水解或复杂的大环化催化产物裂解。最近对切除的Te结构域和肽基-S-N-乙酰半胱胺底物替代物的研究,在这些酶的环化活性和底物耐受性方面取得了重大进展。它们在工程化杂合NRPSs中的应用是一个有趣但尚未充分探索的目标,可用于实现新的结构多样性和设计产物。
为了研究各种Te结构域在杂合NRPSs中发挥作用的能力,将六种在其天然系统中催化不同终止模式的不同Te结构域,与一个双模块模型NRPS系统融合,该系统由短杆菌酪肽NRPS的前两个模块TycA和ProCAT组成。所有Te结构域都能水解从NRPS模板酶促生成的二肽底物D-苯丙氨酸-阿布,不过周转率差异很大。两个Te结构域也能够水解底物D-苯丙氨酸-脯氨酸,并使D-苯丙氨酸-阿布二肽部分环化,这表明在人工环境中,Te结构域可能表现出不易预测的水解和环化活性。
来自异源NRPSs的Te结构域可用于构建杂合NRPSs。这是第一项探索它们对产物模式影响的比较研究。Te结构域固有的特异性和区域选择性应能控制所需的产物裂解,但也可能导致其他潜在有助于产生结构多样性的终止模式。我们的结果为选择适合特定终止反应的Te结构域提供了首批数据。