Lauber E, Janssens L, Weyens G, Jonard G, Richards K E, Lefèbvre M, Guilley H
Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, Strasbourg, France.
Transgenic Res. 2001 Aug;10(4):293-302. doi: 10.1023/a:1016689430264.
Point mutations were introduced into the genes encoding the triple gene bock movement proteins P13 and P15 of beet necrotic yellow vein virus (BNYVV). Mutations which disabled viral cell-to-cell movement in Chenopodium quinoa were then tested for their ability to act as dominant negative inhibiters of movement of wild-type BNYVV when expressed from a co-inoculated BNYVV RNA 3-based replicon. For P13, three types of mutation inhibited the movement function: non-synomynous mutations in the N- and C-terminal hydrophobic domains, a mutation at the boundary between the N-terminal hydrophobic domain and the central hydrophilic domain (mutant P13-A12), and mutations in the conserved sequence motif in the central hydrophilic domain. However, only the 'boundary' mutant P13-A12 strongly inhibited movement of wild-type virus when expressed from the co-inoculated replicon. Similar experiments with P15 detected four movement-defective mutants which strongly inhibited cell-to-cell movement of wild-type BNYVV when the mutants were expressed from a co-inoculated replicon. Beta vulgaris transformed with two of these P15 mutants were highly resistant to fungus-mediated infection with BNYVV.