Suppr超能文献

哺乳动物着丝粒独特的高阶染色质结构。

Distinctive higher-order chromatin structure at mammalian centromeres.

作者信息

Gilbert N, Allan J

机构信息

Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, Kings Buildings, West Mains Road, Edinburgh, EH9 3JR, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11949-54. doi: 10.1073/pnas.211322798.

Abstract

The structure of the higher-order chromatin fiber has not been defined in detail. We have used a novel approach based on sucrose gradient centrifugation to compare the conformation of centromeric satellite DNA-containing higher-order chromatin fibers with bulk chromatin fibers obtained from the same mouse fibroblast cells. Our data show that chromatin fibers derived from the centromeric domain of a chromosome exist in a more condensed structure than bulk chromatin whereas pericentromeric chromatin fibers have an intermediate conformation. From the standpoint of current models, our data are interpreted to suggest that satellite chromatin adopts a regular helical conformation compatible with the canonical 30-nm chromatin fiber whereas bulk chromatin fibers appear less regularly folded and are perhaps intermittently interrupted by deformations. This distinctive conformation of the higher-order chromatin fiber in the centromeric domain of the mammalian chromosome could play a role in the formation of heterochromatin and in the determination of centromere identity.

摘要

高阶染色质纤维的结构尚未得到详细界定。我们采用了一种基于蔗糖梯度离心的新方法,来比较含有着丝粒卫星DNA的高阶染色质纤维与从相同小鼠成纤维细胞中获得的整体染色质纤维的构象。我们的数据表明,源自染色体着丝粒区域的染色质纤维比整体染色质具有更紧密的结构,而着丝粒周围的染色质纤维具有中间构象。从当前模型的角度来看,我们的数据被解释为表明卫星染色质采用与经典30纳米染色质纤维兼容的规则螺旋构象,而整体染色质纤维的折叠似乎不太规则,可能会被变形间歇性打断。哺乳动物染色体着丝粒区域中高阶染色质纤维的这种独特构象可能在异染色质的形成和着丝粒身份的确定中发挥作用。

相似文献

1
Distinctive higher-order chromatin structure at mammalian centromeres.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11949-54. doi: 10.1073/pnas.211322798.
2
H2A.Z contributes to the unique 3D structure of the centromere.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):525-30. doi: 10.1073/pnas.0607870104. Epub 2006 Dec 28.
3
Centromere formation: from epigenetics to self-assembly.
Trends Cell Biol. 2006 Feb;16(2):70-8. doi: 10.1016/j.tcb.2005.12.008. Epub 2006 Jan 18.
4
Unexpected conformational variations of the human centromeric chromatin complex.
Genes Dev. 2018 Jan 1;32(1):20-25. doi: 10.1101/gad.307736.117. Epub 2018 Jan 31.
5
Purification and initial characterization of primate satellite chromatin.
Chromosome Res. 1999;7(5):341-54. doi: 10.1023/a:1009211929408.
6
Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability.
Oncogene. 2012 Jul 5;31(27):3244-53. doi: 10.1038/onc.2011.502. Epub 2011 Nov 28.
7
Plant centromere organization: a dynamic structure with conserved functions.
Trends Genet. 2007 Mar;23(3):134-9. doi: 10.1016/j.tig.2007.01.004. Epub 2007 Feb 1.
8
CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA.
J Cell Biol. 2002 Dec 9;159(5):765-75. doi: 10.1083/jcb.200207112. Epub 2002 Dec 2.
9
Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice.
Mol Biol Evol. 2006 Dec;23(12):2505-20. doi: 10.1093/molbev/msl127. Epub 2006 Sep 20.
10
Centromeric chromatin: what makes it unique?
Curr Opin Genet Dev. 2005 Apr;15(2):177-84. doi: 10.1016/j.gde.2005.01.004.

引用本文的文献

1
Single-chromosome dynamics reveals locus-dependent dynamics and chromosome territory orientation.
J Cell Sci. 2023 Feb 15;136(4). doi: 10.1242/jcs.260137. Epub 2023 Feb 27.
2
Human centromere repositioning activates transcription and opens chromatin fibre structure.
Nat Commun. 2022 Sep 24;13(1):5609. doi: 10.1038/s41467-022-33426-2.
3
H3K9 Methyltransferases Suv39h1 and Suv39h2 Control the Differentiation of Neural Progenitor Cells in the Adult Hippocampus.
Front Cell Dev Biol. 2022 Jan 12;9:778345. doi: 10.3389/fcell.2021.778345. eCollection 2021.
5
Massively multiplex single-molecule oligonucleosome footprinting.
Elife. 2020 Dec 2;9:e59404. doi: 10.7554/eLife.59404.
6
Near-atomic resolution structures of interdigitated nucleosome fibres.
Nat Commun. 2020 Sep 21;11(1):4747. doi: 10.1038/s41467-020-18533-2.
7
Liquid-like interactions in heterochromatin: Implications for mechanism and regulation.
Curr Opin Cell Biol. 2020 Jun;64:90-96. doi: 10.1016/j.ceb.2020.03.004. Epub 2020 May 17.
8
Chromatin Viscoelasticity Measured by Local Dynamic Analysis.
Biophys J. 2020 May 5;118(9):2258-2267. doi: 10.1016/j.bpj.2020.04.002. Epub 2020 Apr 14.
9
Modelling and DNA topology of compact 2-start and 1-start chromatin fibres.
Nucleic Acids Res. 2019 Oct 10;47(18):9902-9924. doi: 10.1093/nar/gkz495.
10
Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci.
Mol Cell. 2018 Nov 15;72(4):786-797.e11. doi: 10.1016/j.molcel.2018.09.016. Epub 2018 Oct 18.

本文引用的文献

2
Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.
Nature. 2001 Mar 1;410(6824):120-4. doi: 10.1038/35065138.
3
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.
Nature. 2001 Mar 1;410(6824):116-20. doi: 10.1038/35065132.
5
Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7266-71. doi: 10.1073/pnas.130189697.
6
The HP1 protein family: getting a grip on chromatin.
Curr Opin Genet Dev. 2000 Apr;10(2):204-10. doi: 10.1016/s0959-437x(00)00058-7.
8
Purification and initial characterization of primate satellite chromatin.
Chromosome Res. 1999;7(5):341-54. doi: 10.1023/a:1009211929408.
9
Identification and characterization of a family of mammalian methyl-CpG binding proteins.
Mol Cell Biol. 1998 Nov;18(11):6538-47. doi: 10.1128/MCB.18.11.6538.
10
Histone H1 and chromatin higher-order structure.
Crit Rev Eukaryot Gene Expr. 1997;7(3):215-30. doi: 10.1615/critreveukargeneexpr.v7.i3.20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验