Suppr超能文献

Ectonucleotidase activities in Sertoli cells from immature rats.

作者信息

Casali E A, da Silva T R, Gelain D P, Kaiser G R, Battastini A M, Sarkis J J, Bernard E A

机构信息

Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

出版信息

Braz J Med Biol Res. 2001 Oct;34(10):1247-56. doi: 10.1590/s0100-879x2001001000003.

Abstract

Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 +/- 6 and 21 +/- 2 nmol Pi mg(-1) min(-1) for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 +/- 2 nmol Pi mg(-1) min(-1) for AMP and 1.52 +/- 0.13 nmol adenosine mg(-1) min(-1), respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验