Suppr超能文献

一氧化氮衍生的氧化剂使谷胱甘肽S-转移酶失活:探索酪氨酸硝化的作用。

Inactivation of glutathione S-transferases by nitric oxide-derived oxidants: exploring a role for tyrosine nitration.

作者信息

Wong P S, Eiserich J P, Reddy S, Lopez C L, Cross C E, van der Vliet A

机构信息

Center for Comparative Respiratory Biology and Medicine, University of California, Davis, California 95616, USA.

出版信息

Arch Biochem Biophys. 2001 Oct 15;394(2):216-28. doi: 10.1006/abbi.2001.2532.

Abstract

Reactive intermediates derived from nitric oxide ((*)NO) are thought to play a contributing role in disease states associated with inflammation and infection. We show here that glutathione S-transferases (GSTs), principal enzymes responsible for detoxification of endogenous and exogenous electrophiles, are susceptible to inactivation by reactive nitrogen species (RNS). Treatment of isolated GSTs or rat liver homogenates with either peroxynitrite, the myeloperoxidase/hydrogen peroxide/nitrite system, or tetranitromethane, resulted in loss of GST activity with a concomitant increase in the formation of protein-associated 3-nitrotyrosine (NO(2)Tyr). This inactivation was only partially (<25%) reversible by dithiothreitol, and exposure of GSTs to hydrogen peroxide or S-nitrosoglutathione was only partially inhibitory (<25%) and did not result in protein nitration. Thus, irreversible modifications such as tyrosine nitration may have contributed to GST inactivation by RNS. Since all GSTs contain a critical, highly conserved, active-site tyrosine residue, we postulated that this Tyr residue might present a primary target for nitration by RNS, thus leading to enzyme inactivation. To directly investigate this possibility, we analyzed purified mouse liver GST-mu, following nitration by several RNS, by trypsin digestion, HPLC separation, and matrix-assisted laser desorption/ionization-time of flight analysis, to determine the degree of tyrosine nitration of individual Tyr residues. Indeed, nitration was found to occur preferentially on several tyrosine residues located in and around the GST active site. However, RNS concentrations that resulted in near complete GST inactivation only caused up to 25% nitration of even preferentially targeted tyrosine residues. Hence, nitration of active-site tyrosine residues may contribute to GST inactivation by RNS, but is unlikely to fully account for enzyme inactivation. Overall, our studies illustrate a potential mechanism by which RNS may promote (oxidative) injury by environmental pollutants in association with inflammation.

摘要

一氧化氮衍生的反应性中间体((* )NO)被认为在与炎症和感染相关的疾病状态中起促进作用。我们在此表明,谷胱甘肽S - 转移酶(GSTs)作为负责内源性和外源性亲电试剂解毒的主要酶,易受活性氮物质(RNS)的失活作用影响。用过氧亚硝酸盐、髓过氧化物酶/过氧化氢/亚硝酸盐系统或四硝基甲烷处理分离的GSTs或大鼠肝脏匀浆,会导致GST活性丧失,同时蛋白质相关的3 - 硝基酪氨酸(NO(2)Tyr)形成增加。这种失活仅部分(<25%)可被二硫苏糖醇逆转,并且将GSTs暴露于过氧化氢或S - 亚硝基谷胱甘肽仅具有部分抑制作用(<25%),且不会导致蛋白质硝化。因此,诸如酪氨酸硝化等不可逆修饰可能导致了RNS对GST的失活作用。由于所有GSTs都含有一个关键的、高度保守的活性位点酪氨酸残基,我们推测该酪氨酸残基可能是RNS硝化的主要靶点,从而导致酶失活。为了直接研究这种可能性,我们通过胰蛋白酶消化、高效液相色谱分离和基质辅助激光解吸/电离飞行时间分析,对经几种RNS硝化后的纯化小鼠肝脏GST - μ进行分析,以确定各个酪氨酸残基的酪氨酸硝化程度。确实,发现硝化优先发生在GST活性位点及其周围的几个酪氨酸残基上。然而,导致GST几乎完全失活的RNS浓度,即使对优先靶向的酪氨酸残基也仅引起高达25%的硝化。因此,活性位点酪氨酸残基的硝化可能导致RNS对GST的失活作用,但不太可能完全解释酶的失活。总体而言,我们的研究阐明了一种潜在机制,通过该机制RNS可能与炎症相关联,促进环境污染物造成(氧化)损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验