Kull F, Ohlson E, Lind B, Haeggström J Z
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
Biochemistry. 2001 Oct 23;40(42):12695-703. doi: 10.1021/bi011348p.
Leukotriene A(4) hydrolase in mammals is a bifunctional zinc metalloenzyme that catalyzes the hydrolysis of leukotriene A(4) into the proinflammatory mediator leukotriene B(4), and also possesses an aminopeptidase activity. Recently we cloned and characterized an leukotriene A(4) hydrolase from Saccharomyces cerevisiae as a leucyl aminopeptidase with an epoxide hydrolase activity. Here we show that S. cerevisiae leukotriene A(4) hydrolase is a metalloenzyme containing one zinc atom complexed to His-340, His-344, and Glu-363. Mutagenetic analysis indicates that the aminopeptidase activity follows a general base mechanism with Glu-341 and Tyr-429 as the base and proton donor, respectively. Furthermore, the yeast enzyme hydrolyzes leukotriene A(4) into three compounds, viz., 5S,6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid, leukotriene B(4), and Delta(6)-trans-Delta(8)-cis-leukotriene B(4), with a relative formation of 1:0.2:0.1. In addition, exposure of S. cerevisiae leukotriene A(4) hydrolase to leukotriene A(4) selectively inactivates the epoxide hydrolase activity with a simultaneous stimulation of the aminopeptidase activity. Moreover, kinetic analyses of wild-type and mutated S. cerevisiae leukotriene A(4) hydrolase suggest that leukotriene A(4) binds in one catalytic mode and one tight-binding, regulatory mode. Exchange of a Phe-424 in S. cerevisiae leukotriene A(4) hydrolase for a Tyr, the corresponding residue in human leukotriene A(4) hydrolase, results in a protein that converts leukotriene A(4) into leukotriene B(4) with an improved efficiency and specificity. Hence, by a single point mutation, we could make the active site better suited to bind and turn over the substrate leukotriene A(4), thus mimicking a distinct step in the molecular evolution of S. cerevisiae leukotriene A(4) hydrolase toward its mammalian counterparts.
哺乳动物中的白三烯A(4)水解酶是一种双功能锌金属酶,它催化白三烯A(4)水解为促炎介质白三烯B(4),并且还具有氨肽酶活性。最近,我们克隆并鉴定了来自酿酒酵母的一种白三烯A(4)水解酶,它是一种具有环氧水解酶活性的亮氨酰氨肽酶。在此我们表明,酿酒酵母白三烯A(4)水解酶是一种金属酶,含有一个与His-340、His-344和Glu-363络合的锌原子。诱变分析表明,氨肽酶活性遵循一种一般碱机制,分别以Glu-341和Tyr-429作为碱和质子供体。此外,酵母酶将白三烯A(4)水解为三种化合物,即5S,6S-二羟基-7,9-反式-11,14-顺式-二十碳四烯酸、白三烯B(4)和Δ(6)-反式-Δ(8)-顺式-白三烯B(4),相对生成比例为1:0.2:0.1。另外,将酿酒酵母白三烯A(4)水解酶暴露于白三烯A(4)会选择性地使环氧水解酶失活,同时刺激氨肽酶活性。而且,对野生型和突变型酿酒酵母白三烯A(4)水解酶的动力学分析表明,白三烯A(4)以一种催化模式和一种紧密结合的调节模式结合。将酿酒酵母白三烯A(4)水解酶中的Phe-424替换为人白三烯A(4)水解酶中的相应残基Tyr,会产生一种能将白三烯A(4)转化为白三烯B(4)的效率和特异性更高的蛋白质。因此,通过单点突变,我们能够使活性位点更适合结合和转化底物白三烯A(4),从而模拟酿酒酵母白三烯A(4)水解酶向其哺乳动物对应物分子进化中的一个独特步骤。