Hughey C A, Hendrickson C L, Rodgers R P, Marshall A G, Qian K
National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA.
Anal Chem. 2001 Oct 1;73(19):4676-81. doi: 10.1021/ac010560w.
At currently achievable Fourier transform ion cyclotron resonance broadband mass spectrometry resolving power (m/deltam50% > 350,000 for 200 < m/z < 1,000), it would be necessary to spread out a conventional mass spectrum over approximately 200 m in order to provide visual resolution of the most closely resolved peaks. Fortunately, there are natural gaps in a typical mass spectrum, spaced 1 Da apart, because virtually no commonly encountered elemental compositions yield masses at those values. Thus, it is possible to break a broadband mass spectrum into 1-Da segments, rotate each segment by 90 degrees, scale each segment according to its mass defect (i.e., difference between exact and nominal mass), and then compress the spacing between the segments to yield a compact display. For hydrocarbon systems, conversion from IUPAC mass to "Kendrick" mass (i.e., multiplying each mass by 14.00000/14.01565) further simplifies the display by rectilinearizing the peak patterns. The resulting display preserves not only the "coarse" spacings (e.g., approximately 1 Da between odd and even masses, corresponding to either even vs odd number of nitrogens or 12C(c) vs 12C(c-1)13C1 elemental compositions of the same molecule; approximately 2-Da separations, corresponding to a double bond or ring; approximately 14 Da separations, corresponding to one CH2 group) but also the "fine structure" (i.e., different mass defects for different elemental compositions) across each 1-Da segment. The method is illustrated for experimental electrospray ionization FTICR ultrahigh-resolution mass spectra of a petroleum crude oil. Several thousand elemental compositions may be resolved visually in a single one-page two-dimensional display, and various compound families-class (NnOoSs), type (Z in C(c)H2(c+z)NnOoSs), and alkylation series-may be identified visually as well.
在当前可实现的傅里叶变换离子回旋共振宽带质谱分辨率(对于200<m/z<1000,m/Δm50%>350,000)下,为了使最接近的分辨峰具有视觉分辨率,需要将常规质谱展宽约200 m。幸运的是,典型质谱中存在间隔为1 Da的自然间隙,因为几乎没有常见的元素组成会产生这些值的质量。因此,可以将宽带质谱分解为1 Da的片段,将每个片段旋转90度,根据其质量亏损(即精确质量与标称质量之差)对每个片段进行缩放,然后压缩片段之间的间距以得到紧凑的显示。对于烃类系统,从IUPAC质量转换为“肯德里克”质量(即将每个质量乘以14.00000/14.01565)通过使峰模式直线化进一步简化了显示。所得显示不仅保留了“粗”间距(例如,奇数和偶数质量之间约1 Da的间距,对应于同一分子中偶数或奇数个氮原子,或12C(c)与12C(c - 1)13C1的元素组成;约2 Da的间隔,对应于一个双键或环;约14 Da的间隔,对应于一个CH2基团),还保留了每个1 Da片段内的“精细结构”(即不同元素组成的不同质量亏损)。该方法通过石油原油的实验电喷雾电离傅里叶变换离子回旋共振超高分辨率质谱进行说明。在单页二维显示中可以直观地分辨出数千种元素组成,并且各种化合物族——类别(NnOoSs)、类型(C(c)H2(c + z)NnOoSs中的Z)和烷基化系列——也可以直观地识别。