Cochran Darcy, Powers Robert
Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA.
Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
Biomedicines. 2024 Aug 6;12(8):1786. doi: 10.3390/biomedicines12081786.
Metabolomics is an interdisciplinary field that aims to study all metabolites < 1500 Da that are ubiquitously found within all organisms. Metabolomics is experiencing exponential growth and commonly relies on high-resolution mass spectrometry (HRMS). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a form of HRMS that is particularly well suited for metabolomics research due to its exceptionally high resolution (10-10) and sensitivity with a mass accuracy in parts per billion (ppb). In this regard, FT-ICR-MS can provide valuable insights into the metabolomics analysis of complex biological systems due to unique capabilities such as the easy separation of isobaric and isomeric species, isotopic fine structure analysis, spatial resolution of metabolites in cells and tissues, and a high confidence (<1 ppm mass error) in metabolite identification. Alternatively, the large and complex data sets, long acquisition times, high cost, and limited access mainly through national mass spectrometry facilities may impede the routine adoption of FT-ICR-MS by metabolomics researchers. This review examines recent applications of FT-ICR-MS metabolomics in the search for clinical and non-human biomarkers; for the analysis of food, beverage, and environmental samples; and for the high-resolution imaging of tissues and other biological samples. We provide recent examples of metabolomics studies that highlight the advantages of FT-ICR-MS for the detailed and reliable characterization of the metabolome. Additionally, we offer some practical considerations for implementing FT-ICR-MS into a research program by providing a list of FT-ICR-MS facilities and by identifying different high-throughput interfaces, varieties of sample types, analysis methods (e.g., van Krevelen diagrams, Kendrick mass defect plot, etc.), and sample preparation and handling protocols used in FT-ICR-MS experiments. Overall, FT-ICR-MS holds great promise as a vital research tool for advancing metabolomics investigations.
代谢组学是一个跨学科领域,旨在研究所有生物体内普遍存在的分子量小于1500道尔顿的代谢物。代谢组学正呈指数级增长,并且通常依赖于高分辨率质谱(HRMS)。傅里叶变换离子回旋共振质谱(FT-ICR-MS)是高分辨率质谱的一种形式,由于其具有极高的分辨率(10-10)和灵敏度,质量准确度可达十亿分之一(ppb),因而特别适合代谢组学研究。在这方面,FT-ICR-MS能够为复杂生物系统的代谢组学分析提供有价值的见解,这得益于其独特的能力,如易于分离等压和同分异构物种、同位素精细结构分析、细胞和组织中代谢物的空间分辨率以及代谢物鉴定的高可信度(质量误差<1 ppm)。然而,庞大而复杂的数据集、较长的采集时间、高昂的成本以及主要通过国家质谱设施才能有限获取,这些因素可能会阻碍代谢组学研究人员常规采用FT-ICR-MS。本综述探讨了FT-ICR-MS代谢组学在寻找临床和非人类生物标志物、分析食品、饮料和环境样品以及对组织和其他生物样品进行高分辨率成像方面的最新应用。我们提供了近期代谢组学研究的实例,突出了FT-ICR-MS在详细且可靠地表征代谢组方面的优势。此外,我们通过提供FT-ICR-MS设施列表,并确定不同的高通量接口、样品类型、分析方法(如范克雷维伦图、肯德里克质量亏损图等)以及FT-ICR-MS实验中使用的样品制备和处理方案,为将FT-ICR-MS纳入研究计划提供了一些实际考虑。总体而言,FT-ICR-MS作为推进代谢组学研究的重要研究工具具有巨大潜力。