Sommer F T, Wennekers T
University of Ulm, Department of Neural Information Processing, Germany.
Neural Netw. 2001 Jul-Sep;14(6-7):825-34. doi: 10.1016/s0893-6080(01)00064-8.
Here, we develop and investigate a computational model of a network of cortical neurons on the base of biophysically well constrained and tested two-compartmental neurons developed by Pinsky and Rinzel [Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39-60]. To study associative memory, we connect a pool of cells by a structured connectivity matrix. The connection weights are shaped by simple Hebbian coincidence learning using a set of spatially sparse patterns. We study the neuronal activity processes following an external stimulation of a stored memory. In two series of simulation experiments, we explore the effect of different classes of external input, tonic and flashed stimulation. With tonic stimulation, the addressed memory is an attractor of the network dynamics. The memory is displayed rhythmically, coded by phase-locked bursts or regular spikes. The participating neurons have rhythmic activity in the gamma-frequency range (30-80 Hz). If the input is switched from one memory to another, the network activity can follow this change within one or two gamma cycles. Unlike similar models in the literature, we studied the range of high memory capacity (in the order of 0.1 bit/synapse), comparable to optimally tuned formal associative networks. We explored the robustness of efficient retrieval varying the memory load, the excitation/inhibition parameters, and background activity. A stimulation pulse applied to the identical simulation network can push away ongoing network activity and trigger a phase-locked association event within one gamma period. Unlike as under tonic stimulation, the memories are not attractors. After one association process, the network activity moves to other states. Applying in close succession pulses addressing different memories, one can switch through the space of memory patterns. The readout speed can be increased up to the point where in every gamma cycle another pattern is displayed. With pulsed stimulation. bursts become relevant for coding, their occurrence can be used to discriminate relevant processes from background activity.
在此,我们基于平斯基和林泽尔[平斯基,P.F.,&林泽尔,J.(1994年)。简化的CA3神经元特劳布模型中的内在和网络节律发生。《计算神经科学杂志》,1,39 - 60]开发并研究了一种皮质神经元网络的计算模型。为了研究联想记忆,我们通过结构化连接矩阵连接一组细胞。连接权重通过使用一组空间稀疏模式的简单赫布同步学习来塑造。我们研究了存储记忆受到外部刺激后的神经元活动过程。在两组模拟实验中,我们探讨了不同类型外部输入(持续刺激和闪光刺激)的影响。在持续刺激下,被寻址的记忆是网络动力学的一个吸引子。记忆以节律性方式显示,由锁相脉冲串或规则尖峰编码。参与的神经元在伽马频率范围(30 - 80赫兹)内有节律性活动。如果输入从一个记忆切换到另一个记忆,网络活动可以在一两个伽马周期内跟随这种变化。与文献中的类似模型不同,我们研究了高记忆容量范围(约0.1比特/突触),这与最优调谐的形式联想网络相当。我们通过改变记忆负载、兴奋/抑制参数和背景活动来探索有效检索的鲁棒性。施加到相同模拟网络的一个刺激脉冲可以推开正在进行的网络活动,并在一个伽马周期内触发一个锁相关联事件。与持续刺激下不同,记忆不是吸引子。经过一次关联过程后,网络活动会转移到其他状态。连续施加寻址不同记忆的脉冲,可以在记忆模式空间中切换。读出速度可以提高到在每个伽马周期显示另一个模式的程度。在脉冲刺激下,脉冲串对于编码变得相关,它们的出现可用于从背景活动中区分相关过程。