Aoyagi M, Arvai A S, Ghosh S, Stuehr D J, Tainer J A, Getzoff E D
Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Biochemistry. 2001 Oct 30;40(43):12826-32. doi: 10.1021/bi011183k.
To better understand potential roles of conserved Trp457 of the murine inducible nitric oxide synthase oxygenase domain (iNOS(ox); residues 1-498) in maintaining the structural integrity of the (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) binding site located at the dimer interface and in supporting H(4)B redox activity, we determined crystallographic structures of W457F and W457A mutant iNOS(ox) dimers (residues 66-498). In W457F iNOS(ox), all the important hydrogen-bonding and aromatic stacking interactions that constitute the H(4)B binding site and that bridge the H(4)B and heme sites are preserved. In contrast, the W457A mutation results in rearrangement of the Arg193 side chain, orienting its terminal guanidinium group almost perpendicular to the ring plane of H(4)B. Although Trp457 is not required for dimerization, both Trp457 mutations led to the increased mobility of the N-terminal H(4)B binding segment (Ser112-Met114), which might indicate reduced stability of the Trp457 mutant dimers. The Trp457 mutant structures show decreased pi-stacking with bound pterin when the wild-type pi-stacking Trp457 position is occupied with the smaller Phe457 in W457F or positive Arg193 in W457A. The reduced pterin pi-stacking in these mutant structures, relative to that in the wild-type, implies stabilization of reduced H(4)B and destabilization of the pterin radical, consequently slowing electron transfer to the heme ferrous-dioxy (Fe(II)O(2)) species during catalysis. These crystal structures therefore aid elucidation of the roles and importance of conserved Trp457 in maintaining the structural integrity of the H(4)B binding site and of H(4)B-bound dimers, and in influencing the rate of electron transfer between H(4)B and heme in NOS catalysis.
为了更好地理解小鼠诱导型一氧化氮合酶加氧酶结构域(iNOS(ox);第1 - 498位氨基酸残基)中保守的色氨酸457在维持位于二聚体界面的(6R)-5,6,7,8-四氢生物蝶呤(H(4)B)结合位点的结构完整性以及支持H(4)B氧化还原活性方面的潜在作用,我们测定了W457F和W457A突变型iNOS(ox)二聚体(第66 - 498位氨基酸残基)的晶体结构。在W457F iNOS(ox)中,构成H(4)B结合位点并连接H(4)B和血红素位点的所有重要氢键和芳香族堆积相互作用均得以保留。相比之下,W457A突变导致精氨酸193侧链重排,使其末端胍基几乎垂直于H(4)B的环平面。尽管二聚化不需要色氨酸457,但这两种色氨酸457突变均导致N端H(4)B结合片段(丝氨酸112 - 甲硫氨酸114)的流动性增加,这可能表明W457突变型二聚体的稳定性降低。当野生型的芳香族堆积色氨酸457位置被W457F中较小的苯丙氨酸457或W457A中带正电的精氨酸193占据时,W457突变型结构显示与结合的蝶呤的π堆积减少。相对于野生型,这些突变型结构中蝶呤π堆积的减少意味着还原型H(4)B的稳定以及蝶呤自由基的不稳定,从而在催化过程中减缓了电子向血红素亚铁 - 双氧(Fe(II)O(2))物种的转移。因此,这些晶体结构有助于阐明保守的色氨酸457在维持H(4)B结合位点和H(4)B结合二聚体的结构完整性以及影响NOS催化过程中H(4)B与血红素之间电子转移速率方面的作用和重要性。