Suppr超能文献

四氢生物蝶呤的结构调节其向一氧化氮合酶中血红素-双氧中间体的电子转移。

Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.

作者信息

Wei Chin-Chuan, Wang Zhi-Qiang, Arvai Andrew S, Hemann Craig, Hille Russ, Getzoff Elizabeth D, Stuehr Dennis J

机构信息

Department of Immunology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

出版信息

Biochemistry. 2003 Feb 25;42(7):1969-77. doi: 10.1021/bi026898h.

Abstract

How 6R-tetrahydrobiopterin (H(4)B) participates in Arg hydroxylation as catalyzed by the nitric oxide synthases (NOSs) is a topic of current interest. Previous work with the oxygenase domain of inducible NOS (iNOSoxy) demonstrated that H(4)B radical formation is kinetically coupled to disappearance of an initial heme-dioxy intermediate and to Arg hydroxylation in a single turnover reaction run at 10 degrees C [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. Here we used 5-methyl-H(4)B to investigate how pterin structure influences radical formation and associated catalytic steps. In the presence of Arg, the heme-dioxy intermediate in 5-methyl-H(4)B-bound iNOSoxy reacted at a rate of 35 s(-)(1), which is 3-fold faster than with H(4)B. This was coupled to a faster rate of 5-methyl-H(4)B radical formation (40 vs 12.5 s(-)(1)) and to a faster and more productive Arg hydroxylation. The EPR spectrum of the enzyme-bound 5-methyl-H(4)B radical had different hyperfine structure than the bound H(4)B radical and exhibited a 3-fold longer half-life after its formation. A crystal structure of 5-methyl-H(4)B-bound iNOSoxy revealed that there are minimal changes in conformation of the bound pterin or in its interactions with the protein as compared to H(4)B. Together, we conclude the following: (1) The rate of heme-dioxy reduction is linked to pterin radical formation and is sensitive to pterin structure. (2) Faster heme-dioxy reduction increases the efficiency of Arg hydroxylation but still remains rate limiting for the reaction. (3) The 5-methyl group influences heme-dioxy reduction by altering the electronic properties of the pterin rather than changing protein structure or interactions. (4) Faster electron transfer from 5-methyl-H(4)B may be due to increased radical stability afforded by the N-5 methyl group.

摘要

6R-四氢生物蝶呤(H(4)B)如何参与一氧化氮合酶(NOSs)催化的精氨酸羟基化反应是当前备受关注的课题。先前对诱导型NOS(iNOSoxy)加氧酶结构域的研究表明,在10℃下进行的单周转反应中,H(4)B自由基的形成在动力学上与初始血红素-双氧中间体的消失以及精氨酸羟基化相关联[Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315 - 319]。在此,我们使用5-甲基-H(4)B来研究蝶呤结构如何影响自由基形成及相关催化步骤。在精氨酸存在的情况下,结合5-甲基-H(4)B的iNOSoxy中的血红素-双氧中间体以35 s⁻¹的速率反应,这比与H(4)B反应时快3倍。这与更快的5-甲基-H(4)B自由基形成速率(40对12.5 s⁻¹)以及更快且更高效的精氨酸羟基化相关联。酶结合的5-甲基-H(4)B自由基的电子顺磁共振(EPR)谱具有与结合的H(4)B自由基不同的超精细结构,并且在形成后半衰期延长了3倍。结合5-甲基-H(4)B的iNOSoxy的晶体结构显示,与H(4)B相比,结合的蝶呤构象及其与蛋白质的相互作用变化极小。综合来看,我们得出以下结论:(1)血红素-双氧还原速率与蝶呤自由基形成相关联,并且对蝶呤结构敏感。(2)更快的血红素-双氧还原提高了精氨酸羟基化的效率,但仍然是该反应的速率限制因素。(3)5-甲基基团通过改变蝶呤的电子性质而非改变蛋白质结构或相互作用来影响血红素-双氧还原。(4)来自5-甲基-H(4)B的更快电子转移可能是由于N-5甲基基团提供的自由基稳定性增加所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验