Borrmann Horst, Campbell Janette, Dixon David A., Mercier Hélène P. A., Pirani Ayaaz M., Schrobilgen Gary J.
McMaster University, Hamilton, Ontario L8S 4M1, Canada, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Batelle Boulevard, P.O. Box 999, KI-83, Richland, Washington 99352, and Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, Stuttgart D-70569, Germany.
Inorg Chem. 1998 Dec 28;37(26):6656-6674. doi: 10.1021/ic980574t.
The series of group 14 metal trigonal bipyramidal anions has been extended to the mixed group 13/group 14 metal TlMTe(3)(3)(-) anions (M = Sn, Pb), obtained by the reaction of Tl(2)M(2)Te(3) and K(2)Te in en or in en/ethylamine mixtures and a stoichiometric excess of 2,2,2-crypt with respect to K(+). The thallium anions were characterized in solution by (119)Sn, (205)Tl, (207)Pb, and (125)Te NMR spectroscopy. The small magnitudes of the relativistically corrected reduced coupling constants, (1)(K(M)(-)(Ch))(RC) and (1)(K(Tl)(-)(Ch))(RC), observed for the previously reported M(2)Ch(3)(2)(-) (Ch = Se, Te) and the TlMTe(3)(3)(-) anions are consistent with predominantly p-bonded cages, and this observation is supported by local and nonlocal density functional theory (DFT) calculations. Theory indicates M-M and Tl-M interactions of high s character corresponding to Mayer bond orders of 0.13-0.32. The (K(M)(-)(M))(RC) and (K(Tl)(-)(M))(RC) couplings are unusually large compared to those of the butterfly-shaped Tl(2)Ch(2)(2)(-) anions and likely arise from higher M-M and Tl-M bond orders, a larger number of coupling pathways, and smaller M-Ch-M and M-Ch-Tl bond angles. The TlPbTe(3)(3)(-) anion has also been structurally characterized by X-ray crystallography in (2,2,2-crypt-K(+))(3)TlPbTe(3)(3)(-).2en [monoclinic system, space group P2(1)/c, Z = 4, a = 15.256(5) Å, b = 26.087(9) Å, c = 20.984(8) Å, and beta = 93.03(3) degrees ] along with Pb(2)Ch(3)(2)(-) (Ch = S, Se) in (2,2,2-crypt-K(+))(2)Pb(2)Ch(3)(2)(-).0.5en [Pb(2)S(3)(2)(-): triclinic system, space group P&onemacr;, Z = 2, a = 10.189(2) Å, b = 11.329(2) Å, c = 23.194(4) Å, alpha = 95.439(14) degrees, beta = 92.562(14) degrees, and gamma = 90.549(14) degrees; Pb(2)Se(3)(2)(-): triclinic system, space group P&onemacr;, Z = 2, a = 10.187(2) Å, b = 11.403(2) Å, c = 23.360(6) Å, alpha = 95.26(2) degrees, beta = 92.17(2) degrees, and gamma = 90.89(2) degrees ]. Density functional theory calculations show that the experimental structures for the M(2)Ch(3)(2)(-) and TlPbTe(3)(3)(-) anions are true minima and reproduce the experimental bond distances and angles. The vibrational frequencies determined by DFT calculations are in good agreement with those determined by Raman spectroscopy and have been used in their assignment.
第14族金属三角双锥阴离子系列已扩展到第13/14族混合金属TlMTe(3)(3)(-)阴离子(M = Sn、Pb),该阴离子通过Tl(2)M(2)Te(3)与K(2)Te在乙二胺或乙二胺/乙胺混合物中反应,并相对于K(+)化学计量过量的2,2,2-穴醚得到。通过(119)Sn、(205)Tl、(207)Pb和(125)Te核磁共振光谱对铊阴离子进行了溶液表征。对于先前报道的M(2)Ch(3)(2)(-)(Ch = Se、Te)和TlMTe(3)(3)(-)阴离子,观察到的相对论校正的约化耦合常数(1)(K(M)(-)(Ch))(RC)和(1)(K(Tl)(-)(Ch))(RC)的小数值与主要为p键合的笼状结构一致,这一观察结果得到了局域和非局域密度泛函理论(DFT)计算的支持。理论表明M-M和Tl-M相互作用具有高s特征,对应于迈耶键级为0.13 - 0.32。与蝴蝶形的Tl(2)Ch(2)(2)(-)阴离子相比,(K(M)(-)(M))(RC)和(K(Tl)(-)(M))(RC)耦合异常大,这可能源于更高的M-M和Tl-M键级、更多的耦合途径以及更小的M-Ch-M和M-Ch-Tl键角。TlPbTe(3)(3)(-)阴离子也已通过X射线晶体学在(2,2,2-穴醚-K(+))(3)TlPbTe(3)(3)(-).2en [单斜晶系,空间群P2(1)/c,Z = 4,a = 15.256(5) Å,b = 26.087(9) Å,c = 20.984(8) Å,且β = 93.03(3)°]中进行了结构表征,同时(2,2,2-穴醚-K(+))(2)Pb(2)Ch(3)(2)(-).0.5en中的Pb(2)Ch(3)(2)(-)(Ch = S、Se)也得到了表征[Pb(2)S(3)(2)(-):三斜晶系,空间群P&onemacr;,Z = 2,a = 10.189(2) Å,b = 11.329(2) Å,c = 23.194(4) Å,α = 95.439(14)°,β = 92.562(