Suppr超能文献

Reaction of Octachlorodirhenate with a Redox-Active Tetrathiafulvalene Phosphine Ligand: Spectroscopic, Magnetic, and Structural Characterization of the Unusual Paramagnetic Salt [ReCl(2)(o-P2)(2)][Re(2)Cl(6)(o-P2)] (o-P2 = o-{P(C(6)H(5))(2)}(2)(CH(3))(2)TTF).

作者信息

Uzelmeier Calvin E., Bartley Stuart L., Fourmigué Marc, Rogers Robin, Grandinetti Giulio, Dunbar Kim R.

机构信息

Department of Chemistry and The Center For Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824, Institut des Materiaux, Université des Nantes, Nantes, France F-44072, and Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487.

出版信息

Inorg Chem. 1998 Dec 28;37(26):6706-6713. doi: 10.1021/ic9808192.

Abstract

Reaction of (n-Bu)(4)N[Re(2)Cl(8)] with the tetrathiafulvalene phosphine ligand o-{P(C(6)H(5))(2)}(2)(CH(3))(2)TTF (o-P2) in refluxing ethanol produces the mixed-nuclearity salt [ReCl(2)(o-P2)(2)][Re(2)Cl(6)(o-P2)] (1.2), composed of the mononuclear Re(III) complex (1) and the mixed-valence Re(II)-Re(III) dinuclear anion (2). The complex crystallizes as a CH(2)Cl(2) solvate in the triclinic space group P&onemacr;, a = 13.4559(1) Å, b = 20.4015(3) Å, c = 21.5538(1) Å, alpha = 88.261(1) degrees, beta = 72.987(1) degrees, gamma = 84.933(1) degrees, and Z = 2. The molecular cation consists of two trans o-P2 ligands in the equatorial plane and axial chloride ligands. The dinuclear anion adopts an eclipsed geometry with an unsymmetrical coordination environment for the two metal atoms; one Re(II) center is coordinated to a chelating o-P2 ligand and two chlorides while the other Re atom is coordinated to four chloride ligands. The dinuclear portion of the salt is a monoanion which leads to a formal bond order assignment of 3.5, based on the fact that the molecule possesses an Re(2)(5+) core. The salt was further characterized by infrared and electronic spectroscopies, electrochemistry, and variable temperature magnetic susceptibility; the presence of the individual ions in bulk samples was verified by positive and negative FAB mass spectrometry. Isolation of the two separate ions was achieved by treatment of the salt with Co(C(5)H(5))(2), which reduces the Re(III) cation to the Re(II) complex ReCl(2)(o-P2)(2) (3). This neutral compound was separated from the byproduct salt [Co(C(5)H(5))(2)][Re(2)Cl(6)(o-P2)] and reoxidized with CCl(4)/CH(2)Cl(2) or NOBF(4) to produce [ReCl(2)(o-P2)(2)][Cl] (1.[Cl]) and [ReCl(2)(o-P2)(2)][BF(4)] (1.[BF(4)]), respectively. Compounds 3, 1.[Cl], and 1.[BF(4)] were identified by a combination of infrared spectroscopy, mass spectrometry, and cyclic voltammetric measurements. Variable temperature dc susceptibility studies of [ReCl(2)(o-P2)(2)][Re(2)Cl(6)(o-P2)] (1.2) revealed classical Curie paramagnetic behavior (with a Curie constant equal to 0.395) and a large temperature independent paramagnetic contribution (chi(TIP) = 9.64 x 10(-)(3) emu/mol). The EPR spectrum of 1.2 consists of a broad, complex signal due to hyperfine interactions to both isotopes (185,187)Re (I = (5)/(2)) and (31)P (I = (1)/(2)) which is typical for paramagnetic metal-metal bonded dirhenium phosphine compounds.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验