Calvo K R, Knoepfler P S, Sykes D B, Pasillas M P, Kamps M P
Department of Pathology, University of California, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0612, USA.
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13120-5. doi: 10.1073/pnas.231115398. Epub 2001 Oct 30.
Hoxa9 and Meis1a are homeodomain transcription factors that heterodimerize on DNA and are down-regulated during normal myeloid differentiation. Hoxa9 and Meis1a cooperate to induce acute myeloid leukemia (AML) in mice, and are coexpressed in human AML. Despite their cooperativity in leukemogenesis, we demonstrated previously that retroviral expression of Hoxa9 alone--in the absence of coexpressed retroviral Meis1 or of expression of endogenous Meis genes--blocks neutrophil and macrophage differentiation of primary myeloid progenitors cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression of Meis1 alone did not immortalize any factor-dependent marrow progenitor. Because HoxA9-immortalized progenitors still execute granulocytic differentiation in response to granulocyte CSF (G-CSF) and monocyte differentiation in response to macrophage CSF (M-CSF), we tested the possibility that Meis1a cooperates with Hoxa9 by blocking viable differentiation pathways unaffected by Hoxa9 alone. Here we report that Meis1a suppresses G-CSF-induced granulocytic differentiation of Hoxa9-immortalized progenitors, permitting indefinite self-renewal in G-CSF. Meis1a also reprograms Hoxa9-immortalized progenitors to proliferate, rather than die, in response to stem cell factor (SCF) alone. We propose that Meis1a and Hoxa9 are part of a molecular switch that regulates progenitor abundance by suppressing differentiation and maintaining self-renewal in response to different subsets of cytokines during myelopoiesis. The independent differentiation pathways targeted by Hoxa9 and Meis1a prompt a "cooperative differentiation arrest" hypothesis for a subset of leukemia, in which cooperating transcription factor oncoproteins block complementary subsets of differentiation pathways, establishing a more complete differentiation block in vivo.
Hoxa9和Meis1a是同源结构域转录因子,它们在DNA上形成异二聚体,并且在正常髓系分化过程中表达下调。Hoxa9和Meis1a协同作用可在小鼠中诱发急性髓系白血病(AML),并且在人类AML中共同表达。尽管它们在白血病发生过程中具有协同作用,但我们之前证明,单独逆转录病毒表达Hoxa9(在没有共表达逆转录病毒Meis1或内源性Meis基因表达的情况下)会阻断在粒细胞-巨噬细胞集落刺激因子(GM-CSF)中培养的原代髓系祖细胞的中性粒细胞和巨噬细胞分化。单独表达Meis1并不能使任何依赖因子的骨髓祖细胞永生化。由于HoxA9永生化的祖细胞仍能响应粒细胞集落刺激因子(G-CSF)进行粒细胞分化,并响应巨噬细胞集落刺激因子(M-CSF)进行单核细胞分化,我们测试了Meis1a通过阻断不受单独Hoxa9影响的可行分化途径与Hoxa9协同作用的可能性。在此我们报告,Meis1a抑制G-CSF诱导的Hoxa9永生化祖细胞的粒细胞分化,从而在G-CSF中实现无限自我更新。Meis1a还使Hoxa9永生化的祖细胞重新编程,使其仅响应干细胞因子(SCF)时增殖而非死亡。我们提出,Meis1a和Hoxa9是分子开关的一部分,该开关通过在骨髓生成过程中抑制分化并响应不同细胞因子亚群维持自我更新来调节祖细胞丰度。Hoxa9和Meis1a靶向的独立分化途径促使针对一部分白血病的“协同分化阻滞”假说,即协同转录因子癌蛋白阻断分化途径的互补亚群,在体内建立更完全的分化阻滞。