Bornholdt S
Institut für Theoretische Physik, Universität Kiel, Germany.
Biol Chem. 2001 Sep;382(9):1289-99. doi: 10.1515/BC.2001.161.
After finishing the sequence of the human genome, a functional understanding of genome dynamics is the next major step on the agenda of the biosciences. New approaches, such as microarray techniques, and new methods of bioinformatics provide powerful tools aiming in this direction. In the last few years, important parts of genome organization and dynamics in a number of model organisms have been determined. However, an integrated view of gene regulation on a genomic scale is still lacking. Here, genome function is discussed from a complex dynamical systems perspective: which dynamical properties can a large genomic system exhibit in principle, given the local mechanisms governing the small subsystems that we know today? Models of artificial genetic networks are used to explore dynamical principles and possible emergent dynamical phenomena in networks of genetic switches. One observes evolution of robustness and dynamical self-organization in large networks of artificial regulators that are based on the dynamic mechanism of transcriptional regulators as observed in biological gene regulation. Possible biological observables and ways of experimental testing of global phenomena in genome function and dynamics are discussed. Models of artificial genetic networks provide a tool to address questions in genome dynamics and their evolution and allow simulation studies in evolutionary genomics.
完成人类基因组测序后,对基因组动态变化的功能理解是生物科学议程上的下一个主要步骤。诸如微阵列技术等新方法以及生物信息学的新方法为此提供了有力工具。在过去几年中,已经确定了许多模式生物中基因组组织和动态变化的重要部分。然而,在基因组规模上对基因调控的综合观点仍然缺乏。在此,从复杂动力系统的角度讨论基因组功能:鉴于我们如今所知的控制小亚系统的局部机制,一个大型基因组系统原则上能展现出哪些动力学特性?人工遗传网络模型用于探索遗传开关网络中的动力学原理和可能出现的动力学现象。人们观察到,基于生物基因调控中观察到的转录调控动态机制的大型人工调控网络中,稳健性和动态自组织的演变。讨论了基因组功能和动态变化中可能的生物学可观测指标以及对全局现象进行实验测试的方法。人工遗传网络模型为解决基因组动态变化及其进化问题提供了一种工具,并允许在进化基因组学中进行模拟研究。