Or-Guil M, Krishnan J, Kevrekidis I G, Bär M
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):046212. doi: 10.1103/PhysRevE.64.046212. Epub 2001 Sep 24.
We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in particular, we discuss three different scenarios involving either the loss of stability or disappearance of stable pulses. In numerical simulations beyond the instabilities we observe replication of pulses ("backfiring") resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We approximate the linear stability of traveling pulses through computations in a finite albeit large domain with periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the resulting spatiotemporal dynamics and "act" upon the back of the pulses. The first scenario has been analyzed earlier [M. G. Zimmermann et al., Physica D 110, 92 (1997)] for high excitability (low excitation threshold): it involves the collision of a stable pulse branch with an unstable pulse branch in a so-called T point. In the framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits and the T point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and periodic boundary conditions. Numerical evidence of the proximity of the infinite-domain T point in this setup appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an entire cascade of saddle nodes causing a "spiraling" of the pulse branch appears near the parameter values corresponding to the infinite-domain T point. Backfiring appears at the first saddle-node bifurcation, which limits the existence region of stable pulses. The third case found in the model for large excitation threshold is an oscillatory instability giving rise to "breathing," traveling pulses that periodically vary in width and speed.
我们研究了一个可激发介质模型中传播脉冲的不稳定性和分岔现象;特别地,我们讨论了三种不同的情况,涉及稳定脉冲的稳定性丧失或消失。在不稳定性之后的数值模拟中,我们观察到脉冲的复制(“回火”),从而导致复杂的周期性或时空混沌动力学以及调制传播脉冲。我们通过在具有周期性边界条件的有限但很大的域中进行计算,来近似传播脉冲的线性稳定性。不稳定性开始时的临界本征模与由此产生的时空动力学相关,并在脉冲的后部“起作用”。第一种情况早前已针对高激发性(低激发阈值)进行了分析[M. G. 齐默尔曼等人,《物理D》110, 92 (1997)]:它涉及在一个所谓的T点处稳定脉冲分支与不稳定脉冲分支的碰撞。在行波常微分方程的框架下,脉冲对应于同宿轨道,T点对应于双异宿环。我们研究了在具有有限长度和周期性边界条件的域中一个脉冲的这种转变。在这种设置下,无限域T点接近的数值证据以两个鞍结分岔的形式出现。或者,对于中等激发阈值,在对应于无限域T点的参数值附近出现了一系列导致脉冲分支“螺旋”的鞍结。回火出现在第一个鞍结分岔处,这限制了稳定脉冲的存在区域。在大激发阈值模型中发现的第三种情况是一种振荡不稳定性,导致“呼吸”现象,即传播脉冲的宽度和速度周期性变化。