Moreno-Spiegelberg Pablo, Arinyo-I-Prats Andreu, Ruiz-Reynés Daniel, Matias Manuel A, Gomila Damià
IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain.
Institute of Computer Science, Czech Academy of Sciences, 182 07 Prague 8, Czech Republic.
Phys Rev E. 2022 Sep;106(3-1):034206. doi: 10.1103/PhysRevE.106.034206.
We study the scenario in which traveling pulses emerge in a prototypical type-I one-dimensional excitable medium, which exhibits two different routes to excitable behavior, mediated by a homoclinic (saddle-loop) and a saddle-node on the invariant cycle bifurcations. We characterize the region in parameter space in which traveling pulses are stable together with the different bifurcations behind either their destruction or loss of stability. In particular, some of the bifurcations delimiting the stability region have been connected, using singular limits, with the two different scenarios that mediated type-I local excitability. Finally, the existence of traveling pulses has been linked to a drift pitchfork instability of localized steady structures.
我们研究了一种情形,即在一个典型的I型一维可激发介质中出现行波脉冲,该介质呈现出两种不同的通向可激发行为的途径,由同宿(鞍环)和不变环上的鞍结分岔介导。我们刻画了参数空间中旅行脉冲稳定存在的区域,以及它们破坏或失去稳定性背后的不同分岔情况。特别地,一些界定稳定区域的分岔,利用奇异极限,与介导I型局部可激发性的两种不同情形联系起来。最后,行波脉冲的存在与局部稳定结构的漂移叉形不稳定性相关联。