Suppr超能文献

磷酸盐和钙储备在肌肉疲劳中的作用。

Role of phosphate and calcium stores in muscle fatigue.

作者信息

Allen D G, Westerblad H

机构信息

Department of Physiology and Institute of Biomedical Research, University of Sydney F13, NSW 2006, Australia.

出版信息

J Physiol. 2001 Nov 1;536(Pt 3):657-65. doi: 10.1111/j.1469-7793.2001.t01-1-00657.x.

Abstract

Intensive activity of muscles causes a decline in performance, known as fatigue, that is thought to be caused by the effects of metabolic changes on either the contractile machinery or the activation processes. The concentration of inorganic phosphate (P(i)) in the myoplasm (P(i)) increases substantially during fatigue and affects both the myofibrillar proteins and the activation processes. It is known that a failure of sarcoplasmic reticulum (SR) Ca(2+) release contributes to fatigue and in this review we consider how raised P(i) contributes to this process. Initial evidence came from the observation that increasing P(i) causes reduced SR Ca(2+) release in both skinned and intact fibres. In fatigued muscles the store of releasable Ca(2+) in the SR declines mirroring the decline in SR Ca(2+) release. In muscle fibres with inoperative creatine kinase the rise of P(i) is absent during fatigue and the failure of SR Ca(2+) release is delayed. These results can all be explained if inorganic phosphate can move from the myoplasm into the SR during fatigue and cause precipitation of CaP(i) within the SR. The relevance of this mechanism in different types of fatigue in humans is considered.

摘要

肌肉的高强度活动会导致性能下降,即疲劳,这被认为是代谢变化对收缩机制或激活过程产生影响所致。肌浆中无机磷酸盐(P(i))的浓度(P(i))在疲劳过程中会大幅增加,并且会影响肌原纤维蛋白和激活过程。已知肌浆网(SR)的Ca(2+)释放功能障碍会导致疲劳,在本综述中,我们将探讨升高的P(i)如何促成这一过程。最初的证据来自于这样的观察:在分离的肌纤维和完整的纤维中,P(i)升高都会导致SR的Ca(2+)释放减少。在疲劳的肌肉中,SR中可释放Ca(2+)的储存量下降,这与SR的Ca(2+)释放减少情况一致。在肌酸激酶不起作用的肌纤维中,疲劳期间P(i)不会升高,SR的Ca(2+)释放功能障碍也会延迟出现。如果无机磷酸盐在疲劳期间能够从肌浆转移到SR中,并在SR内导致CaP(i)沉淀,那么所有这些结果都可以得到解释。我们还将探讨这一机制在人类不同类型疲劳中的相关性。

相似文献

1
Role of phosphate and calcium stores in muscle fatigue.
J Physiol. 2001 Nov 1;536(Pt 3):657-65. doi: 10.1111/j.1469-7793.2001.t01-1-00657.x.
2
Muscle fatigue: the role of intracellular calcium stores.
Can J Appl Physiol. 2002 Feb;27(1):83-96. doi: 10.1139/h02-006.
3
Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue.
J Appl Physiol (1985). 2011 Aug;111(2):358-66. doi: 10.1152/japplphysiol.01404.2010. Epub 2011 Apr 21.
4
Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue.
Acta Physiol Scand. 2003 Sep;179(1):39-48. doi: 10.1046/j.1365-201X.2003.01169.x.
7
The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad.
J Physiol. 1999 Aug 15;519 Pt 1(Pt 1):169-76. doi: 10.1111/j.1469-7793.1999.0169o.x.
8
Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
J Physiol. 2001 Jun 1;533(Pt 2):379-88. doi: 10.1111/j.1469-7793.2001.0379a.x.
9
Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle.
Eur J Appl Physiol. 2000 Oct;83(2-3):166-74. doi: 10.1007/s004210000275.

引用本文的文献

3
Biophysics of ACL Injuries.
Orthop Rev (Pavia). 2024 Dec 7;16:126041. doi: 10.52965/001c.126041. eCollection 2024.
4
A Muscle Physiology-Based Framework for Quantifying Training Load in Resistance Exercises.
Sports (Basel). 2025 Jan 9;13(1):13. doi: 10.3390/sports13010013.
5
Competing effects of activation history on force and cytosolic Ca in intact single mice myofibers.
Pflugers Arch. 2025 Mar;477(3):407-419. doi: 10.1007/s00424-024-03061-5. Epub 2024 Dec 30.
8
P-based biochemical mechanism of endurance-training-induced improvement of running performance in humans.
Eur J Appl Physiol. 2025 Jan;125(1):49-59. doi: 10.1007/s00421-024-05560-w. Epub 2024 Sep 17.
9
A novel kinetic model to demonstrate the independent effects of ATP and ADP/Pi concentrations on sarcomere function.
PLoS Comput Biol. 2024 Aug 5;20(8):e1012321. doi: 10.1371/journal.pcbi.1012321. eCollection 2024 Aug.

本文引用的文献

1
Muscle fatigue: lactic acid or inorganic phosphate the major cause?
News Physiol Sci. 2002 Feb;17:17-21. doi: 10.1152/physiologyonline.2002.17.1.17.
3
Phosphate ion channels in sarcoplasmic reticulum of rabbit skeletal muscle.
J Physiol. 2001 Sep 15;535(Pt 3):715-28. doi: 10.1111/j.1469-7793.2001.t01-1-00715.x.
4
6
Skeletal muscle disorders in heart failure.
Acta Physiol Scand. 2001 Mar;171(3):277-94. doi: 10.1046/j.1365-201x.2001.00830.x.
8
Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
J Physiol. 2001 Jun 1;533(Pt 2):379-88. doi: 10.1111/j.1469-7793.2001.0379a.x.
9
Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic.
J Physiol. 2001 Mar 15;531(Pt 3):707-13. doi: 10.1111/j.1469-7793.2001.0707h.x.
10
Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose.
J Muscle Res Cell Motil. 2000;21(5):481-9. doi: 10.1023/a:1005650425513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验