Korzeniewski Bernard
BioSimulation Center, ul. Filarecka 6/7, 30-110, Kraków, Poland.
Eur J Appl Physiol. 2025 Jan;125(1):49-59. doi: 10.1007/s00421-024-05560-w. Epub 2024 Sep 17.
Endurance training improves running performance in distances where oxidative phosphorylation (OXPHOS) is the main ATP source. Here, a dynamic computer model is used to assess possible biochemical mechanisms underlying this improvement.
The dynamic computer model is based on the "P double-threshold" mechanism of muscle fatigue, according to which the additional ATP usage appears when (1) inorganic phosphate (P) exceeds a critical value (Pi); (2) exercise is terminated because of fatigue, when P reaches a peak value (Pi); (3) the P increase and additional ATP usage increase mutually stimulate each other.
The endurance-training-induced increase in oxidative phosphorylation (OXPHOS) activity attenuates the reaching of Pi by P (and thus of O by O) at increased power output. This in turn allows a greater work intensity, and thus higher speed, to be achieved before exercise is terminated because of fatigue at the end of the 1500 m run. Thus, identical total work is performed in a shorter time. Probably, endurance training also lowers Pi, which improves the homeostasis of "bioenergetic" muscle metabolites: ADP, PCr, P and H ions.
The present dynamic computer model generates clear predictions of metabolic changes that limit performance during 1500 m running. It contributes to our mechanistic understanding of training-induced improvement in running performance and stimulates further physiological experimental studies.
耐力训练可提高氧化磷酸化(OXPHOS)作为主要ATP来源的跑步距离的成绩。在此,使用动态计算机模型来评估这种提高背后可能的生化机制。
动态计算机模型基于肌肉疲劳的“P双阈值”机制,据此,当(1)无机磷酸盐(P)超过临界值(Pi)时;(2)运动因疲劳而终止时,P达到峰值(Pi)时;(3)P的增加和额外ATP使用的增加相互刺激时,会出现额外的ATP使用。
耐力训练引起的氧化磷酸化(OXPHOS)活性增加,在功率输出增加时,减弱了P达到Pi(从而O达到O)的程度。这反过来又使得在1500米跑步结束时,由于疲劳而终止运动之前能够达到更大的工作强度,从而实现更高的速度。因此,在更短的时间内完成相同的总功。耐力训练可能还会降低Pi,这改善了“生物能量”肌肉代谢物(ADP、磷酸肌酸、P和H离子)的稳态。
当前的动态计算机模型对1500米跑步过程中限制成绩的代谢变化做出了明确预测。它有助于我们从机制上理解训练诱导的跑步成绩提高,并刺激进一步的生理学实验研究。