Suppr超能文献

甲基化CpG结合蛋白2抑制LINE-1的表达和逆转座,但不抑制Alu转录。

Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription.

作者信息

Yu F, Zingler N, Schumann G, Strätling W H

机构信息

Institut für Medizinische Biochemie und Molekularbiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.

出版信息

Nucleic Acids Res. 2001 Nov 1;29(21):4493-501. doi: 10.1093/nar/29.21.4493.

Abstract

In order to explore the defense mechanism by which retrotransposons are repressed, we assessed the ability of methyl-CpG-binding protein 2, MeCP2, to influence LINE-1 (L1) and Alu transcription and, furthermore, L1 retrotransposition. In transient transfection assays, targeting of the transcriptional-repression domain (TRD) of MeCP2 (via a linked Gal4 DNA-binding domain) to the transcriptional start site of L1 promoter-driven reporter constructs efficiently repressed transcription. The Gal4-linked TRD of the related methyl-CpG-binding protein MBD1 also repressed transcription but not that of MBD2. Furthermore, full-length MeCP2 effectively repressed transcription of a HpaII-methylated L1 reporter. Secondly, we used a genetic assay employing a full-length neo-marked L1 reporter construct to study L1 retrotransposition. We found the Gal4-linked TRD of MeCP2 to repress effectively L1 retrotransposition when targeted to the retrotransposition reporter. Retrotransposition was also reduced in response to in vitro HpaII methylation of the reporter and was further decreased by co-expressed full-length MeCP2. In striking contrast expression of the Gal4-linked TRD of MeCP2 had no inhibiting effect on transcription of an AluSx reporter tagged with a 7S-upstream sequence. Furthermore, full-length MeCP2 abrogated the methylation-induced repression of this reporter. Our results indicate that MeCP2 serves a role in repression of L1 expression and retrotransposition but has no inhibiting effect on Alu transcription.

摘要

为了探究逆转录转座子被抑制的防御机制,我们评估了甲基化CpG结合蛋白2(MeCP2)影响LINE-1(L1)和Alu转录的能力,进而评估其对L1逆转录转座的影响。在瞬时转染实验中,将MeCP2的转录抑制结构域(TRD)(通过连接的Gal4 DNA结合结构域)靶向L1启动子驱动的报告基因构建体的转录起始位点,可有效抑制转录。相关甲基化CpG结合蛋白MBD1的Gal4连接TRD也能抑制转录,但MBD2的则不能。此外,全长MeCP2可有效抑制HpaII甲基化的L1报告基因的转录。其次,我们使用了一种基因检测方法,采用全长neo标记的L1报告基因构建体来研究L1逆转录转座。我们发现,当MeCP2的Gal4连接TRD靶向逆转录转座报告基因时,可有效抑制L1逆转录转座。报告基因的体外HpaII甲基化也会使逆转录转座减少,共表达全长MeCP2会进一步降低逆转录转座。与之形成鲜明对比的是,MeCP2的Gal4连接TRD的表达对带有7S上游序列标签的AluSx报告基因的转录没有抑制作用。此外,全长MeCP2消除了该报告基因的甲基化诱导的抑制作用。我们的结果表明,MeCP2在抑制L1表达和逆转录转座中发挥作用,但对Alu转录没有抑制作用。

相似文献

1
Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription.
Nucleic Acids Res. 2001 Nov 1;29(21):4493-501. doi: 10.1093/nar/29.21.4493.
3
L1 retrotransposition in neurons is modulated by MeCP2.
Nature. 2010 Nov 18;468(7322):443-6. doi: 10.1038/nature09544.
5
MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.
Cell. 1997 Feb 21;88(4):471-81. doi: 10.1016/s0092-8674(00)81887-5.
6
L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins.
Nucleus. 2017 Sep 3;8(5):548-562. doi: 10.1080/19491034.2017.1330238. Epub 2017 May 19.
8
Methylation-dependent silencing at the H19 imprinting control region by MeCP2.
Nucleic Acids Res. 2002 Mar 1;30(5):1139-44. doi: 10.1093/nar/30.5.1139.
9
MBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing.
J Biol Chem. 2005 Apr 1;280(13):12700-9. doi: 10.1074/jbc.M413492200. Epub 2005 Jan 27.

引用本文的文献

1
Retrotransposons and the brain: Exploring a complex relationship between mobile elements, stress, and neurological health.
Neurobiol Stress. 2025 Jan 18;34:100709. doi: 10.1016/j.ynstr.2025.100709. eCollection 2025 Jan.
3
Low-input and single-cell methods for Infinium DNA methylation BeadChips.
Nucleic Acids Res. 2024 Apr 24;52(7):e38. doi: 10.1093/nar/gkae127.
5
The Regulation and Immune Signature of Retrotransposons in Cancer.
Cancers (Basel). 2023 Aug 30;15(17):4340. doi: 10.3390/cancers15174340.
6
Cytoplasmic DNA: sources, sensing, and role in aging and disease.
Cell. 2021 Oct 28;184(22):5506-5526. doi: 10.1016/j.cell.2021.09.034.
7
Factors Regulating the Activity of LINE1 Retrotransposons.
Genes (Basel). 2021 Sep 30;12(10):1562. doi: 10.3390/genes12101562.
8
Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics.
Exp Biol Med (Maywood). 2021 Oct;246(19):2082-2097. doi: 10.1177/15353702211031247. Epub 2021 Jul 25.
9
piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system.
Neurochem Int. 2021 Sep;148:105086. doi: 10.1016/j.neuint.2021.105086. Epub 2021 May 31.
10
The Molecular Functions of MeCP2 in Rett Syndrome Pathology.
Front Genet. 2021 Apr 23;12:624290. doi: 10.3389/fgene.2021.624290. eCollection 2021.

本文引用的文献

4
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
6
Upstream flanking sequences and transcription of SINEs.
J Mol Biol. 2000 Sep 8;302(1):17-25. doi: 10.1006/jmbi.2000.4027.
9
Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1.
Mol Cell Biol. 2000 Jul;20(14):5107-18. doi: 10.1128/MCB.20.14.5107-5118.2000.
10
Methyl-CpG-binding protein 2 mutations in Rett syndrome.
Curr Opin Genet Dev. 2000 Jun;10(3):275-9. doi: 10.1016/s0959-437x(00)00083-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验