Feeny J, Birdsall B, Bradbury A F, Biekofsky R R, Bayley P M
Molecular Structure Division, National Institute for Medical Research, The Ridgeway, London, UK.
J Biomol NMR. 2001 Sep;21(1):41-8. doi: 10.1023/a:1011924017938.
A general method is presented for magnetic field alignment of proteins in solution. By tagging a target protein with calmodulin saturated with paramagnetic lanthanide ions it is possible to measure substantial residual dipolar couplings (RDC) whilst minimising the effects of pseudocontact shifts on the target protein. A construct was made consisting of a calmodulin-binding peptide (M13 from sk-MLCK) attached to a target protein, dihydrofolate reductase in this case. The engineered protein binds tightly to calmodulin saturated with terbium, a paramagnetic lanthanide ion. By using only a short linker region between the M13 and the target protein, some of the magnetic field alignment induced in the CaM(Tb3+)4 is effectively transmitted to the target protein (DHFR). 1H-15N HSQC IPAP experiments on the tagged complex containing 15N-labelled DHFR-M13 protein and unlabelled CaM(Tb3+)4 allow one to measure RDC contributions in the aligned complex. RDC values in the range +4.0 to -7.4 Hz were measured at 600 MHz. Comparisons of 1H-15N HSQC spectra of 15N-DHFR-M13 alone and its complexes with CaM(Ca2+)4 and CaM(Tb3+)4 indicated that (i) the structure of the target protein is not affected by the complex formation and (ii) the spectra of the target protein are not seriously perturbed by pseudocontact shifts. The use of a relatively large tagging group (CaM) allows us to use a lanthanide ion with a very high magnetic susceptibility anisotropy (such as Tb3+) to give large alignments while maintaining relatively long distances from the target protein nuclei (and hence giving only small pseudocontact shift contributions).
本文提出了一种用于溶液中蛋白质磁场排列的通用方法。通过用饱和顺磁性镧系离子的钙调蛋白标记目标蛋白质,可以测量大量的残余偶极耦合(RDC),同时将伪接触位移对目标蛋白质的影响降至最低。构建了一种由附着在目标蛋白质(在这种情况下为二氢叶酸还原酶)上的钙调蛋白结合肽(来自sk-MLCK的M13)组成的构建体。工程化蛋白质与饱和铽(一种顺磁性镧系离子)的钙调蛋白紧密结合。通过在M13和目标蛋白质之间仅使用短连接区域,CaM(Tb3+)4中诱导的一些磁场排列有效地传递到了目标蛋白质(DHFR)。对含有15N标记的DHFR-M13蛋白和未标记的CaM(Tb3+)4的标记复合物进行的1H-15N HSQC IPAP实验,使人们能够测量排列复合物中的RDC贡献。在600 MHz下测量的RDC值范围为+4.0至-7.4 Hz。单独的15N-DHFR-M13及其与CaM(Ca2+)4和CaM(Tb3+)4的复合物的1H-15N HSQC光谱比较表明:(i)目标蛋白质的结构不受复合物形成的影响;(ii)目标蛋白质的光谱不受伪接触位移的严重干扰。使用相对较大的标记基团(CaM)使我们能够使用具有非常高的磁化率各向异性的镧系离子(如Tb3+)来产生大的排列,同时与目标蛋白质原子核保持相对较长的距离(因此仅产生小的伪接触位移贡献)。