Suppr超能文献

通过晶体学、EPR 和 NMR 光谱学对蛋白质连接自旋标记物的构象进行综合分析。

Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.

机构信息

Department of Structural Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany.

出版信息

J Biomol NMR. 2011 Feb;49(2):111-9. doi: 10.1007/s10858-011-9471-y. Epub 2011 Jan 28.

Abstract

Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein-protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution. In contrast, conformations of the spin label observed in crystal structures of T4 lysozyme are not in agreement with the paramagnetic relaxation enhancement observed for spin-labeled CylR2 in solution. Our data demonstrate that accurate positioning of the paramagnetic center is essential for high-resolution structure determination.

摘要

从顺磁体自由基存在时观察到的顺磁弛豫增强中得出的长程结构信息,对于球状、模块化和固有无序蛋白质以及蛋白质-蛋白质和蛋白质-DNA 复合物的结构特征具有重要意义。在这里,我们使用 X 射线晶体学、电子顺磁共振(EPR)和 NMR 光谱学相结合的方法,对附着在同源二聚体蛋白 CylR2 上的自旋标记的构象进行了表征。在晶体结构中观察到的自旋标记的构象与 EPR 测量的自旋-自旋距离以及 NMR 光谱中的信号展宽之间非常吻合,这表明在晶体结构中观察到的构象在溶液中也是优先的。相比之下,在 T4 溶菌酶的晶体结构中观察到的自旋标记的构象与在溶液中观察到的自旋标记的 CylR2 的顺磁弛豫增强不相符。我们的数据表明,顺磁中心的精确定位对于高分辨率结构测定至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439c/3042103/e8babaceff78/10858_2011_9471_Fig1_HTML.jpg

相似文献

1
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
J Biomol NMR. 2011 Feb;49(2):111-9. doi: 10.1007/s10858-011-9471-y. Epub 2011 Jan 28.
4
EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers.
Methods Mol Biol. 2019;2003:493-528. doi: 10.1007/978-1-4939-9512-7_21.
5
Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR.
J Magn Reson. 2021 Nov;332:107075. doi: 10.1016/j.jmr.2021.107075. Epub 2021 Sep 21.
6
Structural origins of nitroxide side chain dynamics on membrane protein α-helical sites.
Biochemistry. 2010 Nov 30;49(47):10045-60. doi: 10.1021/bi101148w. Epub 2010 Nov 8.
7
Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies.
Biochim Biophys Acta Proteins Proteom. 2021 Jul;1869(7):140653. doi: 10.1016/j.bbapap.2021.140653. Epub 2021 Mar 20.
8
RosettaEPR: an integrated tool for protein structure determination from sparse EPR data.
J Struct Biol. 2011 Mar;173(3):506-14. doi: 10.1016/j.jsb.2010.10.013. Epub 2010 Oct 26.
10
Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
Methods Enzymol. 2015;558:333-362. doi: 10.1016/bs.mie.2015.02.006. Epub 2015 Mar 26.

引用本文的文献

1
DNA binding induces a -to- switch in Cre recombinase to enable intasome assembly.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24849-24858. doi: 10.1073/pnas.2011448117. Epub 2020 Sep 23.
2
The near-symmetry of protein oligomers: NMR-derived structures.
Sci Rep. 2020 May 20;10(1):8367. doi: 10.1038/s41598-020-65097-8.
3
Technological advances in site-directed spin labeling of proteins.
Curr Opin Struct Biol. 2013 Oct;23(5):725-33. doi: 10.1016/j.sbi.2013.06.008. Epub 2013 Jul 11.
4
Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease.
Biochemistry. 2013 May 14;52(19):3278-88. doi: 10.1021/bi400109d. Epub 2013 May 1.
5
When detergent meets bilayer: birth and coming of age of lipid bicelles.
Prog Nucl Magn Reson Spectrosc. 2013 Feb;69:1-22. doi: 10.1016/j.pnmrs.2013.01.001. Epub 2013 Jan 23.
6
The magic of bicelles lights up membrane protein structure.
Chem Rev. 2012 Nov 14;112(11):6054-74. doi: 10.1021/cr300061w. Epub 2012 Aug 24.
7
Simulating the dynamics and orientations of spin-labeled side chains in a protein-DNA complex.
J Phys Chem B. 2012 Apr 5;116(13):4024-33. doi: 10.1021/jp211094n. Epub 2012 Mar 20.

本文引用的文献

1
Protein NMR using paramagnetic ions.
Annu Rev Biophys. 2010;39:387-405. doi: 10.1146/annurev.biophys.093008.131321.
4
Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids.
Angew Chem Int Ed Engl. 2009;48(18):3292-5. doi: 10.1002/anie.200805152.
5
Molecular orientation studies by pulsed electron-electron double resonance experiments.
J Chem Phys. 2009 Feb 14;130(6):064102. doi: 10.1063/1.3073040.
8
SHELXL: high-resolution refinement.
Methods Enzymol. 1997;277:319-43.
9
A short history of SHELX.
Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22. doi: 10.1107/S0108767307043930. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验