Thapar Nitika, Griffith Scott C, Yeates Todd O, Clarke Steven
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
J Biol Chem. 2002 Jan 11;277(2):1058-65. doi: 10.1074/jbc.M108261200. Epub 2001 Nov 1.
Protein l-isoaspartate-(d-aspartate) O-methyltransferases (EC ), present in a wide variety of prokaryotic and eukaryotic organisms, can initiate the conversion of abnormal l-isoaspartyl residues that arise spontaneously with age to normal l-aspartyl residues. In addition, the mammalian enzyme can recognize spontaneously racemized d-aspartyl residues for conversion to l-aspartyl residues, although no such activity has been seen to date for enzymes from lower animals or prokaryotes. In this work, we characterize the enzyme from the hyperthermophilic archaebacterium Pyrococcus furiosus. Remarkably, this methyltransferase catalyzes both l-isoaspartyl and d-aspartyl methylation reactions in synthetic peptides with affinities that can be significantly higher than those of the human enzyme, previously the most catalytically efficient species known. Analysis of the common features of l-isoaspartyl and d-aspartyl residues suggested that the basic substrate recognition element for this enzyme may be mimicked by an N-terminal succinyl peptide. We tested this hypothesis with a number of synthetic peptides using both the P. furiosus and the human enzyme. We found that peptides devoid of aspartyl residues but containing the N-succinyl group were in fact methyl esterified by both enzymes. The recent structure determined for the l-isoaspartyl methyltransferase from P. furiosus complexed with an l-isoaspartyl peptide supports this mode of methyl-acceptor recognition. The combination of the thermophilicity and the high affinity binding of methyl-accepting substrates makes the P. furiosus enzyme useful both as a reagent for detecting isomerized and racemized residues in damaged proteins and for possible human therapeutic use in repairing damaged proteins in extracellular environments where the cytosolic enzyme is not normally found.
蛋白质L-异天冬氨酸-(D-天冬氨酸)O-甲基转移酶(EC )存在于多种原核生物和真核生物中,它能够将随着年龄增长而自发产生的异常L-异天冬氨酰残基转化为正常的L-天冬氨酰残基。此外,哺乳动物的这种酶能够识别自发消旋的D-天冬氨酰残基并将其转化为L-天冬氨酰残基,不过迄今为止尚未在低等动物或原核生物的酶中发现这种活性。在这项研究中,我们对嗜热古细菌激烈火球菌(Pyrococcus furiosus)中的这种酶进行了特性描述。值得注意的是,这种甲基转移酶能够催化合成肽中的L-异天冬氨酰和D-天冬氨酰甲基化反应,其亲和力可能显著高于此前已知催化效率最高的人类酶。对L-异天冬氨酰和D-天冬氨酰残基共同特征的分析表明,该酶的基本底物识别元件可能被N端琥珀酰肽模拟。我们使用激烈火球菌和人类的酶,通过多种合成肽对这一假设进行了测试。我们发现,不含天冬氨酰残基但含有N-琥珀酰基团的肽实际上能被这两种酶甲基酯化。最近确定的激烈火球菌L-异天冬氨酰甲基转移酶与L-异天冬氨酰肽复合物的结构支持了这种甲基受体识别模式。嗜热性以及对甲基接受底物的高亲和力结合,使得激烈火球菌的这种酶既可用作检测受损蛋白质中异构化和消旋化残基的试剂,也有可能用于人类治疗,在通常不存在胞质酶的细胞外环境中修复受损蛋白质。