Suppr超能文献

A fluorogenic assay using pressure-driven flow on a microchip.

作者信息

Kerby M, Chien R L

机构信息

Caliper Technologies Corporation, Mountain View, CA, USA.

出版信息

Electrophoresis. 2001 Oct;22(18):3916-23. doi: 10.1002/1522-2683(200110)22:18<3916::AID-ELPS3916>3.0.CO;2-V.

Abstract

A fluorogenic assay for human T-cell phosphatase (TCPTP) was conducted on an etched glass microchip using pressure driven flow. The TCPTP enzyme catalyzes the removal of a phosphate group from 6,8-difluoro-4-methylumbelliferyl/phosphate (DiFMUP) to produce the fluorogenic product 6,8-difluoro-4-methylumbelliferone (DiFMU). Enzyme assays with real-time on-chip dilution were performed in both low-viscosity (1 cP) buffer and an enzyme solution containing 50% glycerol (6 cP). Single side channels connect a series of reagent wells to a main channel where the fluorescent product of the enzyme reaction passes the detector region. Flow regulation of mixed viscosity fluids requires a pressure control on each arm of the chip contributing to the overall flow. An 8-channel pressure controller was built to regulate the air pressure above all wells feeding channels of the chip, thereby controlling the dilution ratios of buffer, substrate and enzyme. Well pressures maintained a constant concentration of enzyme in the detector channel while adjusting the flow contribution of substrate and buffer. The substrate concentration was stepped over two orders of magnitude while verifying fluid dilutions using marker dyes. The kinetic parameters, Km, Vmax, and Kcat, showed good agreement with the values determined using a standard well plate and fluorometer.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验