Suppr超能文献

金属酶活性位点的建模5. 嗜热栖热菌[NiFe]氢化酶中H₂通过亲核加成机制进行的异裂键裂解

Modeling the active sites in metalloenzymes 5. The heterolytic bond cleavage of H(2) in the [NiFe] hydrogenase of desulfovibrio gigas by a nucleophilic addition mechanism.

作者信息

Niu S, Hall M B

机构信息

Contribution from HPCC Group, Environmental Molecular Science Laboratory, Battelle, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

出版信息

Inorg Chem. 2001 Nov 19;40(24):6201-3. doi: 10.1021/ic0107274.

Abstract

The H(2) activation catalyzed by an Fe(II)-Ni(III) model of the [NiFe] hydrogenase of Desulfovibrio gigas has been investigated by density functional theory (DFT/B3LYP) calculations on the neutral and anionic active site complexes, (CO)(CN)(2)Fe(mu-SH)(2)Ni(SH)(SH(2)) and (CO)(CN)(2)Fe(mu-SH)(2)Ni(SH)(2). The results suggest that the reaction proceeds by a nucleophilic addition mechanism that cleaves the H-H bond heterolytically. The terminal cysteine residue Cys530 in the [NiFe] hydrogenase active site of the D. gigas enzyme plays a crucial role in the catalytic process by accepting the proton. The active site is constructed to provide access by this cysteine residue, and this role explains the change in activity observed when this cysteine is replaced by a selenocysteine. Furthermore, the optimized geometry of the transition state in the model bears a striking resemblance to the geometry of the active site as determined by X-ray crystallography.

摘要

通过对中性和阴离子活性位点配合物(CO)(CN)(2)Fe(μ-SH)(2)Ni(SH)(SH(2))(CO)(CN)(2)Fe(μ-SH)(2)Ni(SH)(2)进行密度泛函理论(DFT/B3LYP)计算,研究了巨大脱硫弧菌[NiFe]氢化酶的Fe(II)-Ni(III)模型催化的H(2)活化作用。结果表明,该反应通过亲核加成机制进行,以异裂方式断裂H-H键。巨大脱硫弧菌酶的[NiFe]氢化酶活性位点中的末端半胱氨酸残基Cys530通过接受质子在催化过程中起关键作用。活性位点的构建使得该半胱氨酸残基能够接近底物,并且这一作用解释了当该半胱氨酸被硒代半胱氨酸取代时所观察到的活性变化。此外,模型中过渡态的优化几何结构与通过X射线晶体学确定的活性位点几何结构惊人地相似。

相似文献

5
Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.
Inorg Chem. 2018 Mar 5;57(5):2558-2569. doi: 10.1021/acs.inorgchem.7b02905. Epub 2018 Feb 21.
8
Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas.
Nature. 1995 Feb 16;373(6515):580-7. doi: 10.1038/373580a0.
9
Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase.
Nature. 2015 Apr 23;520(7548):571-4. doi: 10.1038/nature14110. Epub 2015 Jan 26.

引用本文的文献

1
How Geometric Constraints Control the Hydride Position and Activity in [NiFe]-Hydrogenases and Their Biomimetic Complexes.
Inorg Chem. 2025 May 26;64(20):10078-10086. doi: 10.1021/acs.inorgchem.5c00670. Epub 2025 May 9.
2
Interplay of hemilability and redox activity in models of hydrogenase active sites.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9775-E9782. doi: 10.1073/pnas.1710475114. Epub 2017 Oct 30.
3
Photoelectrochemical H Evolution with a Hydrogenase Immobilized on a TiO-Protected Silicon Electrode.
Angew Chem Weinheim Bergstr Ger. 2016 May 10;128(20):6075-6078. doi: 10.1002/ange.201511822. Epub 2016 Apr 8.
4
Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2 -Protected Silicon Electrode.
Angew Chem Int Ed Engl. 2016 May 10;55(20):5971-4. doi: 10.1002/anie.201511822. Epub 2016 Apr 8.
5
Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.
Acc Chem Res. 2015 May 19;48(5):1286-95. doi: 10.1021/acs.accounts.5b00058. Epub 2015 May 5.
6
Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II).
J Biol Inorg Chem. 2006 Apr;11(3):286-306. doi: 10.1007/s00775-005-0076-3. Epub 2006 Mar 2.
7
A theoretical study of spin states in Ni-S4 complexes and models of the [NiFe] hydrogenase active site.
J Biol Inorg Chem. 2004 Oct;9(7):873-84. doi: 10.1007/s00775-004-0588-2. Epub 2004 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验