Cao Z, Hall M B
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
J Am Chem Soc. 2001 Apr 25;123(16):3734-42. doi: 10.1021/ja000116v.
Optimized structures for the redox species of the diiron active site in [Fe]-hydrogenase as observed by FTIR and for species in the catalytic cycle for the reversible H(2) oxidation have been determined by density-functional calculations on the active site model, (L)(CO)(CN)Fe(mu-PDT)(mu-CO)Fe(CO)(CN)(L')(L = H(2)O, CO, H(2), H(-); PDT = SCH(2)CH(2)CH(2)S, L' = CH(3)S(-), CH(3)SH; q = 0, 1-, 2-, 3-). Analytical DFT frequencies on model complexes (mu-PDT)Fe(2)(CO)(6) and (mu-PDT)Fe(2)(CO)(4)(CN)(2)(-) are used to calibrate the calculated CN(-) and CO frequencies against the measured FTIR bands in these model compounds. By comparing the predicted CN(-) and CO frequencies from DFT frequency calculations on the active site model with the observed bands of D. vulgaris [Fe]-hydrogenase under various conditions, the oxidation states and structures for the diiron active site are proposed. The fully oxidized, EPR-silent form is an Fe(II)-Fe(II) species. Coordination of H(2)O to the empty site in the enzyme's diiron active center results in an oxidized inactive form (H(2)O)Fe(II)-Fe(II). The calculations show that reduction of this inactive form releases the H(2)O to provide an open coordination site for H(2). The partially oxidized active state, which has an S = (1)/(2) EPR signal, is an Fe(I)-Fe(II) species. Fe(I)-Fe(I) species with and without bridging CO account for the fully reduced, EPR-silent state. For this fully reduced state, the species without the bridging CO is slightly more stable than the structure with the bridging CO. The correlation coefficient between the predicted CN(-) and CO frequencies for the proposed model species and the measured CN(-) and CO frequencies in the enzyme is 0.964. The proposed species are also consistent with the EPR, ENDOR, and Mössbauer spectroscopies for the enzyme states. Our results preclude the presence of Fe(III)-Fe(II) or Fe(III)-Fe(III) states among those observed by FTIR. A proposed reaction mechanism (catalytic cycle) based on the DFT calculations shows that heterolytic cleavage of H(2) can occur from (eta(2)-H(2))Fe(II)-Fe(II) via a proton transfer to "spectator" ligands. Proton transfer to a CN(-) ligand is thermodynamically favored but kinetically unfavorable over proton transfer to the bridging S of the PDT. Proton migration from a metal hydride to a base (S, CN, or basic protein site) results in a two-electron reduction at the metals and explains in part the active site's dimetal requirement and ligand framework which supports low-oxidation-state metals. The calculations also suggest that species with a protonated Fe-Fe bond could be involved if the protein could accommodate such species.
通过对活性位点模型(L)(CO)(CN)Fe(μ-PDT)(μ-CO)Fe(CO)(CN)(L')(L = H₂O、CO、H₂、H⁻;PDT = SCH₂CH₂CH₂S,L' = CH₃S⁻、CH₃SH;q = 0、1⁻、2⁻、3⁻)进行密度泛函计算,确定了[Fe]-氢化酶中二铁活性位点氧化还原物种的优化结构,以及可逆H₂氧化催化循环中各物种的结构。利用模型配合物(μ-PDT)Fe₂(CO)₆和[(μ-PDT)Fe₂(CO)₄(CN)₂]²⁻的分析性DFT频率,将计算得到的CN⁻和CO频率与这些模型化合物中测得的FTIR谱带进行校准。通过将活性位点模型DFT频率计算预测的CN⁻和CO频率与不同条件下普通脱硫弧菌[Fe]-氢化酶观察到的谱带进行比较,提出了二铁活性位点的氧化态和结构。完全氧化的、EPR沉默形式是Fe(II)-Fe(II)物种。H₂O配位到酶的二铁活性中心的空位点会产生一种氧化的无活性形式(H₂O)Fe(II)-Fe(II)。计算表明,这种无活性形式的还原会释放H₂O,为H₂提供一个开放的配位位点。具有S = 1/2 EPR信号的部分氧化活性状态是Fe(I)-Fe(II)物种。有和没有桥连CO的Fe(I)-Fe(I)物种构成了完全还原的、EPR沉默状态。对于这种完全还原状态,没有桥连CO的物种比有桥连CO的结构略稳定。所提出的模型物种预测的CN⁻和CO频率与酶中测得的CN⁻和CO频率之间的相关系数为0.964。所提出的物种也与该酶状态的EPR、ENDOR和穆斯堡尔光谱一致。我们的结果排除了FTIR观察到的状态中存在Fe(III)-Fe(II)或Fe(III)-Fe(III)状态。基于DFT计算提出的反应机制(催化循环)表明,H₂的异裂裂解可以从(η²-H₂)Fe(II)-Fe(II)通过质子转移到“旁观”配体发生。质子转移到CN⁻配体在热力学上是有利的,但在动力学上不如质子转移到PDT的桥连S。质子从金属氢化物迁移到碱(S、CN或碱性蛋白质位点)会导致金属上的双电子还原,部分解释了活性位点对双金属的需求以及支持低氧化态金属的配体框架。计算还表明,如果蛋白质能够容纳此类物种,则可能涉及具有质子化Fe-Fe键的物种。