Suppr超能文献

通过遗传编程学习高效解决规划问题。

Learning to solve planning problems efficiently by means of genetic programming.

作者信息

Aler R, Borrajo D, Isasi P

机构信息

Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.

出版信息

Evol Comput. 2001 Winter;9(4):387-420. doi: 10.1162/10636560152642841.

Abstract

Declarative problem solving, such as planning, poses interesting challenges for Genetic Programming (GP). There have been recent attempts to apply GP to planning that fit two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In this article, we propose to evolve only the heuristics to make a particular planner more efficient. This approach is more feasible than (b) because it does not have to build a planner from scratch but can take advantage of already existing planning systems. It is also more efficient than (a) because once the heuristics have been evolved, they can be used to solve a whole class of different planning problems in a planning domain, instead of running GP for every new planning problem. Empirical results show that our approach (EvoCK) is able to evolve heuristics in two planning domains (the blocks world and the logistics domain) that improve PRODIGY4.0 performance. Additionally, we experiment with a new genetic operator --Instance-Based Crossover--that is able to use traces of the base planner as raw genetic material to be injected into the evolving population.

摘要

声明性问题求解,例如规划,给遗传编程(GP)带来了有趣的挑战。最近有人尝试将遗传编程应用于规划,这符合两种方法:(a)使用遗传编程在规划空间中进行搜索,或者(b)进化出一个规划器。在本文中,我们提议仅进化启发式方法,以使特定的规划器更高效。这种方法比(b)更可行,因为它不必从头构建一个规划器,而是可以利用现有的规划系统。它也比(a)更高效,因为一旦启发式方法进化出来,它们就可以用于解决规划领域中的一整类不同的规划问题,而不必为每个新的规划问题运行遗传编程。实证结果表明,我们的方法(EvoCK)能够在两个规划领域(积木世界和物流领域)进化出启发式方法,从而提高PRODIGY4.0的性能。此外,我们试验了一种新的遗传算子——基于实例的交叉——它能够将基础规划器的轨迹用作原始遗传物质注入进化种群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验