Suppr超能文献

使用遗传编程在两个医学领域中不断发展的基于规则的系统。

Evolving rule-based systems in two medical domains using genetic programming.

作者信息

Tsakonas Athanasios, Dounias Georgios, Jantzen Jan, Axer Hubertus, Bjerregaard Beth, von Keyserlingk Diedrich Graf

机构信息

Department of Financial and Management Engineering, University of the Aegean, 31 Fostini St., 82100 Chios, Greece.

出版信息

Artif Intell Med. 2004 Nov;32(3):195-216. doi: 10.1016/j.artmed.2004.02.007.

Abstract

OBJECTIVE

To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations.

MATERIAL

Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method.

METHODS

Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems.

RESULTS

Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach.

CONCLUSION

The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

摘要

目的

展示并比较基于不同遗传编程(GP)的智能方法在两个医学领域构建基于规则的系统中的应用,这两个领域分别是失语症亚型的诊断和巴氏涂片检查的分类。

材料

过去的数据包括(a)通过对每位患者进行免费访谈,由合作的医学专家对失语症亚型做出的成功诊断,以及(b)细胞技术人员对先前使用巴氏染色法染色的涂片(细胞图像)进行的正确分类。

方法

首先提出一种混合方法,该方法结合了标准遗传编程和启发式分层清晰规则库构建。然后,尝试使用遗传编程来生成基于清晰规则的系统。最后,由一个语法驱动的遗传编程系统组成另一个混合智能模型,用于生成基于模糊规则的系统。

结果

结果表明了所提出系统的有效性,同时还将它们在效率、准确性和可理解性方面与归纳机器学习方法以及标准遗传编程符号表达式方法进行了比较。

结论

所提出的基于GP的智能方法能够为医学专家产生准确且可理解的结果,与其他智能方法相比具有竞争力。作者的目标是生成准确且合理的决策规则,这些规则可能有助于医生得出结论,即使以更高的分类得分作为代价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验