Suppr超能文献

Reduction by sevoflurane of adenosine 5'-triphosphate-activated inward current of locus coeruleus neurons in pontine slices of rats.

作者信息

Masaki E, Kawamura M, Kato F

机构信息

Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan.

出版信息

Brain Res. 2001 Dec 7;921(1-2):226-32. doi: 10.1016/s0006-8993(01)03125-0.

Abstract

Increasing evidence indicates that volatile general anesthetics exert their effects by affecting various types of membrane conductance expressed in the central nervous system (CNS), such as ligand-gated receptor-channels. The most recently identified family of the receptor-channels in the CNS are the extracellular ATP-gated channels (P2X purinoceptors). In the present study, we tested whether volatile anesthetics can affect P2X receptor function in the CNS network. We recorded whole-cell currents of locus coeruleus (LC) neurons in pontine slices from young rats. Adenosine 5'-triphosphate (ATP) sodium (0.03-3 mM) evoked a rapidly rising and moderately desensitizing inward current (50-200 pA) in a dose-dependent manner in LC neurons at a holding potential of -80 mV. Perfusion with clinically relevant concentration of sevoflurane (0.1-0.5 mM) reduced the ATP-induced inward current in a dose-dependent manner (to 56.8+/-5.9% of control with 0.5 mM sevoflurane; mean+/-S.E.M., n=13). Estimated IC(50) of sevoflurane was 0.59 mM. We conclude that the attenuation of extracellular ATP-mediated signaling in the central nervous system might be one of the multiple actions of volatile anesthetics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验