Engelsman M, Remeijer P, van Herk M, Lebesque J V, Mijnheer B J, Damen E M
Department of Radiotherapy, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
Int J Radiat Oncol Biol Phys. 2001 Dec 1;51(5):1290-8. doi: 10.1016/s0360-3016(01)01729-1.
With the mean lung dose (MLD) as an estimator for the normal tissue complication probability (NTCP) of the lung, we assessed whether the probability of tumor control of lung tumors might be increased by dose escalation in combination with a reduction of field sizes, thus increasing target dose inhomogeneity while maintaining a constant MLD.
An 8-MV AP-PA irradiation of a lung tumor, located in a cylindrically symmetric lung-equivalent phantom, was modeled using numerical simulation. Movement of the clinical target volume (CTV) due to patient breathing and setup errors was simulated. The probability of tumor control, expressed as the equivalent uniform dose (EUD) of the CTV, was assessed as a function of field size, under the constraint of a constant MLD. The approach was tested for a treatment of a non-small cell lung cancer (NSCLC) patient using the beam directions of the clinically applied treatment plan.
In the phantom simulation it was shown that by choosing field sizes that ensured a minimum dose of 95% in the CTV ("conventional" plan) taking into account setup errors and tumor motion, an EUD of the CTV of 43.8 Gy can be obtained for a prescribed dose of 44.2 Gy. By reducing the field size and thus shifting the 95% isodose surface inwards, the EUD increases to a maximum of 68.3 Gy with a minimum dose in the CTV of 55.2 Gy. This increase in EUD is caused by the fact that field size reduction enables escalation of the prescribed dose while maintaining a constant MLD. Further reduction of the field size results in decrease of the EUD because the minimum dose in the CTV becomes so low that it has a predominant effect on the EUD, despite further escalation of the prescribed dose. For the NSCLC patient, the EUD could be increased from an initial 62.2 Gy for the conventional plan, to 83.2 Gy at maximum. In this maximum, the prescribed dose is 88.1 Gy, and the minimum dose in the CTV is 67.4 Gy. In this case, the 95% isodose surface is conformed closely to the "static" CTV during treatment planning.
Iso-NTCP escalation of the probability of tumor control is possible for lung tumors by reducing field sizes and allowing a larger dose inhomogeneity in the CTV. Optimum field sizes can be derived, having the highest EUD and highest minimum dose in the CTV under condition of a constant NTCP of the lungs. We conclude that the concept of homogeneous dose in the target volume is not the best approach to reach the highest probability of tumor control for lung tumors.
以平均肺剂量(MLD)作为肺正常组织并发症概率(NTCP)的估计值,我们评估了通过增加剂量并结合减小射野大小来提高肺肿瘤的肿瘤控制概率是否可行,从而在保持MLD恒定的同时增加靶区剂量不均匀性。
使用数值模拟对位于圆柱形对称肺等效体模中的肺肿瘤进行8 MV前后对穿照射建模。模拟了由于患者呼吸和摆位误差导致的临床靶区(CTV)的移动。在MLD恒定的约束下,将以CTV的等效均匀剂量(EUD)表示的肿瘤控制概率评估为射野大小的函数。使用临床应用治疗计划的射野方向对一名非小细胞肺癌(NSCLC)患者的治疗方法进行了测试。
在体模模拟中表明,通过选择能确保CTV内最小剂量为95%的射野大小(“传统”计划),同时考虑摆位误差和肿瘤运动,对于44.2 Gy的处方剂量,CTV的EUD可达到43.8 Gy。通过减小射野大小从而使95%等剂量面内移,EUD增加到最大值68.3 Gy,CTV内最小剂量为55.2 Gy。EUD的这种增加是由于射野大小减小使得在保持MLD恒定的情况下能够提高处方剂量。进一步减小射野大小会导致EUD降低,因为CTV内的最小剂量变得过低,尽管处方剂量进一步增加,但它对EUD仍具有主要影响。对于NSCLC患者,EUD可从传统计划最初的62.2 Gy增加到最大83.2 Gy。在此最大值时,处方剂量为88.1 Gy,CTV内最小剂量为67.4 Gy。在这种情况下,在治疗计划期间95%等剂量面与“静态”CTV紧密贴合。
对于肺肿瘤,通过减小射野大小并允许CTV内有更大的剂量不均匀性,有可能实现肿瘤控制概率的等NTCP增加。可以得出最佳射野大小,即在肺的NTCP恒定的条件下,具有最高的EUD和CTV内最高的最小剂量。我们得出结论,靶区内均匀剂量的概念并非实现肺肿瘤最高肿瘤控制概率的最佳方法。