Suppr超能文献

Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic mechanisms.

作者信息

Plekhanova O, Parfyonova Y, Bibilashvily R, Domogatskii S, Stepanova V, Gulba D C, Agrotis A, Bobik A, Tkachuk V

机构信息

Molecular Endocrinology Laboratory, Institute of Experimental Cardiology, Cardiology Research Center, 121552, Moscow, Russia.

出版信息

Atherosclerosis. 2001 Dec;159(2):297-306. doi: 10.1016/s0021-9150(01)00511-1.

Abstract

Urokinase plasminogen activator (uPA) has been implicated in the healing responses of injured arteries, but the importance of its various properties that influence smooth muscle cell (SMC) proliferation and migration in vivo is unclear. We used three recombinant (r-) forms of uPA, which differ markedly in their proteolytic activities and abilities to bind to the uPA receptor (uPAR), to determine, which property most influences the healing responses of balloon catheter injured rat carotid arteries. After injury, uPA and uPAR expression increased markedly throughout the period when medial SMCs were rapidly proliferating and migrating to form the neointima. Perivascular application of uPA neutralizing antibodies immediately after injury attenuated the healing response, significantly reducing neointima size and neointimal SMC numbers. Perivascular application of r-uPAwt (wild type uPA) or r-uPA/GDF (r-uPA with multiple mutations in its growth factor-like domain) doubled the size of the neointima. Four days after injury these two uPAs nearly doubled neointimal and medial SMC numbers in the vessels, and induced greater reductions in lumen size than injury alone. Proteolytically inactive r-uPA/H/Q (containing glutamine rather than histidine-204 in its catalytic site) did not affect neointima or lumen size. Also, in contrast to the actions of proteolytically active uPAs, tissue plasminogen activator (tPA) did not affect the rate of neointima development. We conclude that uPA is an important factor regulating the healing responses of balloon catheter injured arteries, and its proteolytic property, which cannot be mimicked by tPA, greatly influences SMC proliferation and early neointima formation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验