Morris M C, Depollier J, Mery J, Heitz F, Divita G
Centre de Recherches de Biochimie Macromoléculaire, UPR-1086 CNRS, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France.
Nat Biotechnol. 2001 Dec;19(12):1173-6. doi: 10.1038/nbt1201-1173.
The development of peptide drugs and therapeutic proteins is limited by the poor permeability and the selectivity of the cell membrane. There is a growing effort to circumvent these problems by designing strategies to deliver full-length proteins into a large number of cells. A series of small protein domains, termed protein transduction domains (PTDs), have been shown to cross biological membranes efficiently and independently of transporters or specific receptors, and to promote the delivery of peptides and proteins into cells. TAT protein from human immunodeficiency virus (HIV-1) is able to deliver biologically active proteins in vivo and has been shown to be of considerable interest for protein therapeutics. Similarly, the third alpha-helix of Antennapedia homeodomain, and VP22 protein from herpes simplex virus promote the delivery of covalently linked peptides or proteins into cells. However, these PTD vectors display a certain number of limitations in that they all require crosslinking to the target peptide or protein. Moreover, protein transduction using PTD-TAT fusion protein systems may require denaturation of the protein before delivery to increase the accessibility of the TAT-PTD domain. This requirement introduces an additional delay between the time of delivery and intracellular activation of the protein. In this report, we propose a new strategy for protein delivery based on a short amphipathic peptide carrier, Pep-1. This peptide carrier is able to efficiently deliver a variety of peptides and proteins into several cell lines in a fully biologically active form, without the need for prior chemical covalent coupling or denaturation steps. In addition, this peptide carrier presents several advantages for protein therapy, including stability in physiological buffer, lack of toxicity, and lack of sensitivity to serum. Pep-1 technology should be extremely useful for targeting specific protein-protein interactions in living cells and for screening novel therapeutic proteins.
肽类药物和治疗性蛋白质的发展受到细胞膜通透性差和选择性低的限制。人们越来越努力通过设计将全长蛋白质递送至大量细胞的策略来规避这些问题。一系列被称为蛋白质转导结构域(PTDs)的小蛋白质结构域已被证明能有效穿过生物膜,且不依赖转运蛋白或特异性受体,并能促进肽和蛋白质进入细胞。来自人类免疫缺陷病毒(HIV-1)的TAT蛋白能够在体内递送生物活性蛋白质,并且已被证明在蛋白质治疗方面具有相当大的吸引力。同样,触角足蛋白同源结构域的第三个α螺旋以及单纯疱疹病毒的VP22蛋白能促进共价连接的肽或蛋白质进入细胞。然而,这些PTD载体存在一定数量的局限性,因为它们都需要与靶肽或蛋白质交联。此外,使用PTD-TAT融合蛋白系统进行蛋白质转导可能需要在递送前使蛋白质变性,以增加TAT-PTD结构域的可及性。这一要求在蛋白质递送时间和细胞内激活时间之间引入了额外的延迟。在本报告中,我们提出了一种基于短两亲性肽载体Pep-1的蛋白质递送新策略。这种肽载体能够以完全生物活性的形式将多种肽和蛋白质有效递送至多种细胞系,而无需事先进行化学共价偶联或变性步骤。此外,这种肽载体在蛋白质治疗方面具有几个优点,包括在生理缓冲液中的稳定性、无毒性以及对血清不敏感。Pep-1技术对于靶向活细胞中特定的蛋白质-蛋白质相互作用以及筛选新型治疗性蛋白质应该极其有用。