Yoshikawa Tomoaki, Sugita Toshiki, Mukai Yohei, Abe Yasuhiro, Nakagawa Shinsaku, Kamada Haruhiko, Tsunoda Shin-ichi, Tsutsumi Yasuo
Laboratory of Pharmaceutical Proteomics, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
Biomaterials. 2009 Jul;30(19):3318-23. doi: 10.1016/j.biomaterials.2009.02.031. Epub 2009 Mar 21.
Protein transduction domains (PTDs), such as HIV-derived Tat, have been successfully used as functional biomaterials for intracellular delivery of anti-cancer macromolecular drugs (protein, peptides, and oligonucleotides). Although there were therefore great expectations regarding the therapeutic potential of PTDs for the development of anti-cancer therapeutics, their clinical application so far has been extremely limited because of the relatively high concentrations required to mediate any effects on cancer cells in vitro or in vivo. In this context, improving the transduction efficiency of PTDs using phage display-based molecular evolution techniques may be useful for creating artificial PTDs with high efficiency and safety. Here, we report an evaluation of transduction efficiency and toxicity of such artificial PTDs (designated mT02 and mT03) compared with Tat. The internalization of mT02 was the most rapid and efficient by a mechanism different from the usual macropinocytosis. Furthermore, we found that artificial PTDs fused with survivin antagonistic peptide potentiate tumor cell-cytostatic activity. Thus, the results of this work provide new insights for designing new-generation peptide therapeutics for a wide variety of cancers as well as those expressing survivin.
蛋白质转导结构域(PTDs),如源自HIV的Tat,已成功用作功能生物材料,用于将抗癌大分子药物(蛋白质、肽和寡核苷酸)细胞内递送。因此,尽管人们对PTDs在抗癌治疗开发中的治疗潜力寄予厚望,但由于在体外或体内介导对癌细胞的任何作用都需要相对较高的浓度,其临床应用迄今为止极为有限。在这种情况下,使用基于噬菌体展示的分子进化技术提高PTDs的转导效率可能有助于创建高效且安全的人工PTDs。在此,我们报告了与Tat相比,此类人工PTDs(命名为mT02和mT03)的转导效率和毒性评估。mT02的内化最为迅速和高效,其机制不同于通常的巨胞饮作用。此外,我们发现与生存素拮抗肽融合的人工PTDs可增强肿瘤细胞的细胞生长抑制活性。因此,这项工作的结果为设计针对多种癌症以及表达生存素的癌症的新一代肽疗法提供了新的见解。