Ghose S, Alsing P M, Deutsch I H
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056119. doi: 10.1103/PhysRevE.64.056119. Epub 2001 Oct 24.
We have identified ultracold atoms in magneto-optical double-well potentials as a very clean setting in which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics are analyzed using action-angle variables and Poincaré surfaces of section. We show that for the initial state prepared in current experiments [D. J. Haycock et al., Phys. Rev. Lett. 85, 3365 (2000)], classical and quantum expectation values diverge after a finite time, and the observed experimental dynamics is consistent with quantum-mechanical predictions. Furthermore, the motion corresponds to tunneling through a dynamical potential barrier. The coupling between the spin and the motional subsystems, which are very different in nature from one another, leads to interesting questions regarding the transition from regular quantum dynamics to chaotic classical motion.
我们已确定处于磁光双阱势中的超冷原子是研究具有多个自由度的非线性系统的量子和经典动力学的非常纯净的环境。在这个系统中,量子层面的纠缠和经典层面的混沌源于原子自旋与其质心运动之间的不可分离耦合。利用作用角变量和截面庞加莱曲面分析了混沌动力学的主要特征。我们表明,对于当前实验[D. J. 海科克等人,《物理评论快报》85, 3365 (2000)]中制备的初始状态,经典和量子期望值在有限时间后发散,并且观察到的实验动力学与量子力学预测一致。此外,该运动对应于通过动态势垒的隧穿。自旋与运动子系统之间的耦合,它们在本质上彼此非常不同,引发了关于从规则量子动力学向混沌经典运动转变的有趣问题。