Wang Xiaoguang, Ghose Shohini, Sanders Barry C, Hu Bambi
Department of Physics and Center for Nonlinear Studies, Hong Kong Baptist University, Hong, Kong, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1 Pt 2):016217. doi: 10.1103/PhysRevE.70.016217. Epub 2004 Jul 30.
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
我们通过考虑一个多量子比特系统来探索经典混沌系统中的纠缠动力学,该系统整体表现为一个遵循量子踢顶动力学的自旋系统。在经典极限下,根据哈密顿量中混沌参数κ的强度,踢顶表现出规则和混沌两种动力学。我们表明,对于多量子比特系统的二分纠缠和成对纠缠而言,其纠缠产生了量子混沌的特征。在混沌区域二分纠缠增强,而成对纠缠受到抑制。此外,我们定义了一个时间平均纠缠能力,并表明随着κ使系统从主要是规则状态转变为主要是混沌状态,这种纠缠能力会发生显著变化,从而清晰地识别出混沌边缘。当对所有状态求这种纠缠能力的平均值时,它产生了全局混沌的特征。这种全局纠缠能力的定性行为与经典李雅普诺夫指数的行为相似。