Suppr超能文献

含噪声一维映射的弗罗贝尼乌斯 - 佩龙算子谱的数值分析:迈向随机分岔理论

Numerical analysis of spectra of the Frobenius-Perron operator of a noisy one-dimensional mapping: toward a theory of stochastic bifurcations.

作者信息

Inoue J, Doi S, Kumagai S

机构信息

Faculty of Human Relation, Koka Women's University, Kyoto 615, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056219. doi: 10.1103/PhysRevE.64.056219. Epub 2001 Oct 23.

Abstract

A different method to detect the stochastic bifurcation point of a one-dimensional mapping in the presence of noise is proposed. This method analyzes the eigenvalues and eigenfunctions of the noisy Frobenius-Perron operator. The invariant density or the eigenfunction of the eigenvalue 1 of the operator possesses "static" information of the noisy one-dimensional dynamics while the other eigenvalues and eigenfunctions have "dynamic" information. Clear bifurcation phenomena have been observed in a noisy sine-circle map and both stochastic saddle-node and period-doubling bifurcation points have been successfully defined in terms of the eigenvalues.

摘要

提出了一种在存在噪声的情况下检测一维映射随机分岔点的不同方法。该方法分析了含噪弗罗贝尼乌斯 - 佩龙算子的特征值和特征函数。该算子的不变密度或特征值1的特征函数拥有含噪一维动力学的“静态”信息,而其他特征值和特征函数具有“动态”信息。在含噪正弦 - 圆映射中观察到了清晰的分岔现象,并且已根据特征值成功定义了随机鞍结分岔点和倍周期分岔点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验