Suppr超能文献

作为耦合系统中混沌 - 超混沌转变预测指标的对称性增加分岔

Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems.

作者信息

Yanchuk S, Kapitaniak T

机构信息

Institute of Mathematics, Academy of Sciences of Ukraine, 3 Tereshchenkivska Street, Kiev 252601, Ukraine.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056235. doi: 10.1103/PhysRevE.64.056235. Epub 2001 Oct 30.

Abstract

In weakly coupled systems, it is possible to observe the coexistence of the chaotic attractors which are located out of the invariant manifold and are not symmetrical in relation to this manifold. When the control parameter is changed, these attractors can undergo a chaos-hyperchaos transition. We give numerical evidence that before this transition the coexisting attractors merge together creating an attractor symmetrical with respect to the invariant manifold. We argue that the attractors that are not located at the invariant manifold can exhibit dynamical behavior similar to bubbling and on-off intermittency previously observed for the attractors located at the invariant manifold, and we describe the mechanism of these phenomena.

摘要

在弱耦合系统中,可以观察到位于不变流形之外且相对于该流形不对称的混沌吸引子的共存。当控制参数改变时,这些吸引子可能会经历从混沌到超混沌的转变。我们给出了数值证据,表明在这种转变之前,共存的吸引子会合并在一起,形成一个相对于不变流形对称的吸引子。我们认为,位于不变流形之外的吸引子可以表现出类似于先前在位于不变流形上的吸引子中观察到的冒泡和开-关间歇性的动力学行为,并描述了这些现象的机制。

相似文献

1
Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056235. doi: 10.1103/PhysRevE.64.056235. Epub 2001 Oct 30.
2
Bifurcation scenarios for bubbling transition.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016204. doi: 10.1103/PhysRevE.67.016204. Epub 2003 Jan 8.
3
Route to hyperchaos in a system of coupled oscillators with multistability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046212. doi: 10.1103/PhysRevE.83.046212. Epub 2011 Apr 19.
5
Chaos-hyperchaos transition.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):1972-6. doi: 10.1103/physreve.62.1972.
6
Dynamical origin for the occurrence of asynchronous hyperchaos and chaos via blowout bifurcations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066203. doi: 10.1103/PhysRevE.68.066203. Epub 2003 Dec 17.
7
Cycling chaotic attractors in two models for dynamics with invariant subspaces.
Chaos. 2004 Sep;14(3):571-82. doi: 10.1063/1.1769111.
9
Transition to phase synchronization in coupled periodically driven chaotic pendulums.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 2):026213. doi: 10.1103/PhysRevE.63.026213. Epub 2001 Jan 24.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验